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1 Objective 
In a previous technical memorandum [1] the antenna concepts of the phase center of an antenna and 
the virtual element (VE) associated with a transmit-receive (T-R) channel were discussed. We also 
introduced the notions of the far field and the parallel ray approximation. In this memo, we will build on 
these ideas to introduce the concept of the virtual array (VA), and to try to understand the virtues and 
limitations of the VA idea. We will show that various physical antenna array configurations and data 
collection protocols can generate useful VAs. Finally, we will discuss the confusion over the concepts of 
coarrays and VAs, and show that the VA is not the convolution of the T and R array configurations, while 
the coarray is.1 

2 The Physical Configuration 
Consider a radar system having a transmit (T) array antenna and a receive (R) array antenna. In general, 
the two are physically separate, though in many cases of interest they will be the same array. We 
assume both arrays are compact and that targets of interest are in the far field of each; see [1] for our 
definition of these terms. We also assume that the T and R arrays are colocated; this is as opposed to 
“widely separated” antennas. We are not aware of an accepted formal definition of the limit on T-R 
spacing that defines “colocated”, but here we assume that spacing to be much less than the distance to 
any scatterer P of interest. While we could be more general, there is little of practical use to us to be 
gained by doing so. 

Figure 1 illustrates the general configuration of interest [3]. A transmit array contains NT elements at 
ranges RTn, n = 0,…,NT−1 from the scatterer P and spans a total dimension of DT. A receive array is 
similar, with NR elements arranged over a total dimension DR at ranges RRn, n = 0,…,NR−1 from P. DT 
and DR are both much less than any of the {RTn} and {RRn} (“compact”), as is the separation between 
the T and R arrays (“colocated”). As a consequence of these assumptions, we can also assume that 

• The parallel ray approximation is valid [1]; 
• The nominal angle from the transmit array to P is approximately the same as that from the 

receive array to P; 

                                                           
1 Maybe or maybe not surprisingly, the IEEE standard for antenna definitions [2] does not define either of the 
terms “coarray” or “virtual array”. 
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• The nominal ranges from each array to P are also approximately the same, so that … 
• The transmit and receive propagation losses are equal as well 

 

 

Figure 1. General compact, colocated transmit and receive arrays. The elements are not necessarily 
colinear or uniformly spaced, and the T and R arrays are not necessarily the same size. 

Let the signal ( ) ( ) ( )0 0exp 2x t A m t j F tπ φ = ⋅ +   is emitted from transmit element n, where m(t) is a 

baseband modulation function, for example a constant for a constant-frequency waveform, or a linear 

FM sweep or Barker phase code for a pulse compression waveform. The complex amplitude ˆ
nmA  of the 

signal at receive element m can be found from 
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 (1) 

Here ρ is the reflectivity of the scatterer P. As in [1], k accounts for all amplitude factors due to one-way 
propagation, e.g. the 1/R amplitude loss and any atmospheric losses. Each T-R element pairing defines a 
single channel characterized in significant part by its two-way path length Tn RmR R+  [1]. 

In this memo, we will be concerned primarily with one-dimensional linear arrays (LAs), often but not 
always shared for both transmit and receive, as shown in Figure 2. The left half of the figure shows a 
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non-equispaced array of N elements. Let N be odd initially, N = 2M + 1, and index the elements from 
−M to +M. Let the zero-indexed element be located at the origin on the x axis; note that this is not 
necessarily the center of the array extent D. The right half of the figure shows the common case of 
equispaced elements, called a uniform linear array (ULA). In this case the element locations are xn = nd, 
the origin is at the center of the ULA, and the parallel ray approximation gives the range from each 
element to P as 0 sinnR R nd θ= − , , ,n M M= − + . 

 

 

  
 

Figure 2. Compact one-dimensional linear arrays (LAs). In general, the elements are not uniformly 
spaced (left half of the figure). The uniform linear array (ULA) on the right has five equispaced 

elements indexed from −2 to +2 (N = 5, M = 2). 

 

3 The Virtual Array 
Given a transmit and receive array antenna, the corresponding virtual array (VA) is the assemblage of 
the virtual elements [1] corresponding to each T-R channel [4]. Even though there are only NT+NR 
elements, in general the VA will contain NRNT VEs. Figure 3 illustrates the VA corresponding to the 
transmit and receive arrays of Figure 1. The left half of the figure shows the construction of the three 
VEs generated using the leftmost transmit element and the three receive elements; the VE is at the 
midpoint of the line connecting each T-R element pair. Also shown is the range from two of those VEs to 
P. The right half shows the complete VA. The colors of the VEs that comprise the VA indicate the 
transmit element with which each is associated. There are NTNR = 12 T-R channels, and so 12 VEs in the 
VA. 

Note that the VA, as defined here, does not include any concept of directional antenna beams. Each 
original transmit and receive element, and each VE is assumed to radiate and receive isotropically. 
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Because it is built on the idea of VEs and phase centers, the VA is only intended to model phase data. 

 

 

 

Figure 3. The virtual array. The left half of the figure illustrates construction of the location of the 
three virtual elements of the virtual array corresponding to the leftmost transmit element. The right 

half shows the complete virtual array. The colors indicate which VEs are associated with which 
transmit element. 

 

It is easy to construct an array in which more than one channel results in the same VE location. This is 
the case, for instance, for any monostatic linear array having two or more element pairs, each located 
symmetrically about the same point. Each symmetric pair of elements then has a VE at that point. If N 
channels having a common VE location transmit different waveforms, there will simply be N coincident 
VEs using those different waveforms. If they transmit the same waveform, then they will effectively 
create a single VE transmitting that waveform with an amplitude that is N times higher than the 
transmission of a single physical element. 

Given a physical T-R antenna configuration, the corresponding VA is unique. It is not entirely clear to me 
whether the converse is true or not, i.e. whether or not more than one T-R array pair can generate a 
given VA. In the degenerate case of only 1 transmit element and 1 receive element, the generating T-R 
pair is clearly not unique: any pair of T and R elements connected by a line having the same midpoint 
will generate the same VA, which is merely the single VE at that midpoint. Thus, rotating the T-R pair 
orientation around the midpoint, or increasing or decreasing the separation between them 
symmetrically about that midpoint, will leave the VA unchanged so long as the range to the target is 
large enough that the constraints of a compact array and therefore of far-field operation are satisfied. 
When the T and R arrays consist of multiple elements, however, it seems difficult to find a new set of T-R 
locations that generates the same set of VEs using the same number of elements. 
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4 Describing the Virtual Array: The Locator Function 
Denote the set of NR transmit element locations as{ } 0, , 1T

Tn n N= −x


. It is convenient to represent this set 

of locations by a spatial “locator function” ( )TL x  that is simply a sum of Dirac impulse functions, one at 

each transmit element location: ( ) ( )1
0

TN
T TnnL δ−

== −∑x x x . Similarly, the locator function for the 

receive array is ( ) ( )1
0

RN
R RmmL δ−

== −∑x x x . The locator function for the virtual array is then simply the 

sum of impulse functions at each midpoint (VE location): 
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We will temporarily call this the midpoint array. 

5 The Virtual Array as a Convolution, Not 
Equation (2) is almost, but not quite, the convolution of the transmit and receive locator functions. To 
see this, write that convolution explicitly: 
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  (3) 

The last step used the identity ( ) ( ) ( )0 0g d gδ − =∫ y y y y y  [5]. The convolution produces a set of VE 

locations that is the sum of the transmit and receive element locations, without the scaling by 2 of Eq. 
(2). We will call this array, again temporarily, the sum array. 

6 Are Coarrays and Virtual Arrays the Same Thing? And What is That 
Thing? 

Some authors refer to a coarray (CA) associated with a transmit and receive array, in addition to or 
instead of a virtual array. Unfortunately, there appears to be some inconsistency in the literature 
regarding the definitions of the CA and VA, and whether or not they are the same thing. For example: 

• Hoctor and Kassam [6] define the sum coarray2 to be the set of element locations obtained as 
the sum of the transmit and receive element locations for all combinations of T and R elements 

                                                           
2 They also define a difference coarray, but it is not applicable here. 
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(i.e., all T-R channels in our terminology). Consequently, their sum coarray is our sum array of 
Eq. (3).3 

• Kilpatrick and Longstaff [7] define the term “coarray” to mean the sum array. They also discuss 
the midpoint array (called the “SAR array” in their discussion), pointing out the factor-of-two 
scaling between the two. 

• Davis et al [8], Forsythe and Bliss [9], and Chen and P. P. Vaidyanathan [10] all also discuss the 
sum array, but assign it the name “virtual array”. 

• Finally, Davis [4] defines the term “virtual array” to mean the midpoint array. 

Thus some authors define the virtual array as the sum array, while others define it as the midpoint array. 
Also, some authors use the term coarray, some virtual array, and some both. 

Considering these examples as a whole, this author believes the best approach is to draw a distinction 
between the VA and CA. We will define the CA as the sum coarray obtained by convolution of the T and 
R arrays as in Eq. (3) and having locator function ( )sumL x . We will define the VA as the midpoint array 

having locator function ( )midL x , as in Eq. (2). The coordinates of the CA VEs will then be those of the 

VA, scaled up by a factor of two: ( ) ( )2sum midL L=x x . We will use the terms VA and CA (mostly VA) 

going forward, discarding the temporary terms “sum array” and “midpoint array”. Finally, we will go 
back to referring to the locator function for the VA as ( )TRL x ; thus, ( ) ( )TR midL L=x x . 

7 Interpreting the Virtual Array 
How should we interpret a virtual array? Consider a set of transmit elements and a set of receive 
elements. In general, each transmit element transmits a different waveform at a different time, with 
each of those transmitted signals being scattered from a target scatterer P in the far field and received 
at each of the receive elements.4 Each T-R pair thus describes a separate physical channel. The VA is 
imagined as an equivalent array consisting of the collection of corresponding independent monostatic 
virtual elements, one per physical channel. Two-way monostatic transmission by each VE duplicates the 
path length, and therefore received phase history, of one of the physical T-R channels. The ensemble of 
received signals observed by the complete VA will produce the same collective set of phase histories as 
that of the physical T-R configuration and data collection protocol. 

In the case of the CA, the one-way path lengths from the CA VEs to P are the same as the two-way path 
lengths of the VA VEs. This suggests that, in order to produce the same set of received phase histories, 
the interaction of the coarray with P might be imagined as a one-way transmission from P located at x = 
0 to the full coarray acting as the receive array [5]. However, this viewpoint would seem to require a 
common transmit waveform, which we have labored not to assume so far. 

                                                           
3 Hoctor and Kassam refer to the spatial configuration of the CA as the morphological convolution of the transmit 
and receive array spatial configurations [6]. 
4 In practice, we will mostly be interested in less general scenarios. 
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An alternative interpretation of the CA, perhaps more palatable to a radar engineer’s worldview, is to 
imagine a single transmit location that illuminates P with a single waveform. The reflected signal is 
received at the NTNR elements of the CA. Each T-R path then includes a common term for the path 
length from the transmit source to P. This term will produce an inconsequential common phase term in 
all of the received signals, which may be factored out into their complex amplitudes, leaving the 
differences in path lengths traveled as the essential information [4]. However, this viewpoint still seems 
to require a common transmit waveform. 

8 Some Virtual Array Examples 
The following subsections illustrate several VA examples. In all of these examples, we will restrict 
ourselves to uniform linear arrays for both transmit and receive, since most practical cases of interest to 
us fall into that class. 

8.1 The Bistatic Case 
Using the results above, we can describe the VA for the bistatic T-R configuration shown in the top line 
of Figure 4. The transmit “array” is a single element, NT = 1. The receive array is a 1D ULA with and NR = 
5. The dashed lines show the transmit and receive element pairs that combine to form the left- and 
rightmost virtual elements of the VA on the third line, located at the midpoint between those pairs. The 
same process with the remaining receive VEs yields the complete VA shown. Both the VE spacing and 
the size of the VA are one-half those of the physical receive array. The VA is centered halfway between 
the T and R array centers. The number of distinct channels is NR. 

 

Figure 4. Physical and virtual arrays for a 1D bistatic ULA configuration. 

 

8.2 Synthetic Aperture Radar 
Synthetic aperture radar and sonar (SAR and SAS) is an imaging sensor technique for obtaining cross-
range resolution much finer than can be obtained with a non-SAR or SAS “real beam” system. SAR 
concepts are discussed in [11]. Here, we are interested in the data collection protocol used by synthetic 
aperture sensors and the resulting virtual array. 
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A standard SAR system forms a synthetic array or aperture (SA) by physically locating a monostatic radar 
at one “element” location of the SA to be synthesized; radiating a pulse from that location; and 
collecting and storing the received data vs. range. The radar (presumed carried on a moving platform 
such as an aircraft or spacecraft in SAR, or towed by a submarine or surface ship in SAS) then advances 
to the next “element” location in the SA and radiates and receives another pulse. This continues 
indefinitely, with the effective SA size being determined by a “sliding window” style of processing that 
combines data from N consecutive transmit locations to define the SA extent. 

Figure 5 constructs the VA for this mode of operation. Since each pulse transmission consists of 
transmitting and receiving from the same physical location,5 each such transmission defines a T-R 
channel whose virtual element is also at the same location. That is, the VA is simply the assemblage of 
transmit locations that will be combined in subsequent processing. The number of distinct channels is 
again N.  

 

Figure 5. The virtual array in synthetic aperture operation. The shades of gray and dotted lines show 
which transmit and reception points define each virtual element in the VA. 

 

It is well-known that a standard synthetic array of size D produces a beamwidth half as wide as that of 
the physical phased array of the same extent, thus obtaining 2× better angular resolution than the 
physical array [11]. This is easily explained by comparing the VAs for the two cases. Consider Figure 6. 
The left half constructs the VA of a system with a single transmit element and a co-located five-element 
receive ULA. This is essentially a monostatic version of Figure 4. The result is a virtual array one-half the 
extent of the physical array. 

 

                                                           
5 The “stop and hop” approximation is usually invoked to justify ignoring motion of the platform during the pulse 
transit time. This is typically a very good assumption in SAR, less so in SAS. See [11] for a discussion. 
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Figure 6. Virtual arrays for single-input physical and synthetic array formation. Dotted lines indicate 
which transmit and receive VE pairs form each VA element. Different shades of gray designate 

physical and virtual elements that correspond to the same pulse transmission: one pulse is 
transmitted in the physical array case, while five are transmitted in the synthetic array case. 

The right half of the figure repeats the construction of Figure 5, resulting in a VA identical to the physical 
array. Therefore, the virtual array corresponding to a synthetic array of size D is twice the size of the VA 
corresponding to a physical array of the same size D, assuming a single transmit phase center. The larger 
effective antenna size of the SAR VA explains the reduced beamwidth and improved angular resolution 
of the synthetic array over the physical array. More differences between the two configurations will 
become apparent when we consider the antenna patterns in the next memo in this series. 

8.3 The Vernier Array 
Figure 7 shows an example of using the virtual array concept to provide properly equispaced samples in 
the along-track dimension for a synthetic aperture system. The upper half of the figure shows a 4-
element physical array where the rightmost element can both transmit and receive. Transmission occurs 
only from that element; the other three elements are receive-only. The figure shows the position of the 
physical array at three consecutive pulse transmission times. The sensor platform and array move to the 
right (+x direction) only; the displacement in the vertical direction is just for convenience in illustrating 
the overlapped array positions at those three times. The bottom half of the figure shows that the 
consecutive positions of the half-sized VA provide continuous, equispaced sampling in the x dimension. 

This mode of operation is sometimes called a vernier array. It is common in synthetic aperture sonar, 
where the slow speed of propagation of sound in water may make it impossible to maintain a platform 
velocity slow enough to receive the transmission from one pulse before another is needed at the next 
desired spatial sampling location unless the range swath is kept very short. The vernier array allows 
more platform motion between transmissions while maintaining adequate spatial sampling. 
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Figure 7. Operation of a physical SIMO arrays on consecutive pulses so as to provide continuous 
equispaced sampling. This technique is sometimes called a vernier array, and is common in synthetic 

aperture sonar. 

 

8.4 Filling a Sparse Array 
Figure 8 shows an example wherein a sparse physical array can result in a filled virtual array. The 
physical array has NT = 3 transmitting elements which are operated separately, meaning either that they 
are operated sequentially or that they transmit different waveforms. It also has NR = 3 receiving 
elements, one of which is common with one of the transmit elements. The colors of the virtual elements 
in the VA indicate the generating transmit element. The physical array is sparse in that it is has no 
transmit or receive elements at the two locations with dashed circles. The total number of physical 
elements is either NT+NR = 6 or NT+NR−1 = 5, depending on whether we count the shared T/R element 
as one or two elements. However, the resulting VA is filled, meaning that it has elements at uniform 
spacing with none missing. It is also non-redundant in that no two VEs exist at the same location. The 
total number of VEs in the VA is NTNR = 9. Thus, a filled VA can be created without the element cost of a 
completely filled physical array. 

 

 

Figure 8. Creating a filled, non-redundant virtual array using a sparse physical array. The colors of the 
virtual elements in the VA indicate the generating transmit element. 
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8.5 Creating a Two-Dimensional Array from Two One-Dimensional Arrays 
Two one-dimensional arrays, oriented at an angle to one another, create a two-dimensional virtual 
array. Figure 9 illustrates this for the case of 3-element transmit and receive ULAs (NT,NR = 3) oriented 
orthogonally to one another. The resulting VA is a filled 3×3 square array with NTNR = 9 VEs, spaced by 
half the spacing of the T and R arrays. 

Though not shown here, the element spacing in the T and R arrays does not have to be the same. If it 
isn’t, the result would be a rectangular array. If the T and R arrays are not orthogonal in orientation, the 
resulting VA will be trapezoidal. 

 

 

Figure 9. Creating a filled, non-redundant 2D virtual array from separate 1D transmit and receive 
arrays. 

 

8.6 Consistency with Equation (2) 
It is easily seen that formation of the VA in each of these example is consistent with Eq. (2). In the first 
bistatic example the transmit locator function is a single impulse ( )0Tδ −x x . The VA locator function 

( )TRL x  is then simply the receive locator function ( )RL x  shifted by 0Tx , with the resulting distribution 

then scaled down by a factor of two. The SAR case is a time series of sequential single-element T-R 
actions. Each action uses only a single “element” and therefore the T and R locator functions are 
identical, ( ) ( ) ( )0T R TL L δ= = −x x x x . Each transmission then results in a VE at the same location. The 

VA is the assemblage of the time sequence of VEs and is therefore just the sum of the T-R locations, as 
illustrated in Figure 5. 
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The vernier array might be viewed as similar to a combination of the bistatic array and the SAR time 
series collection protocol. For the first transmission, the transmit locator function represents a single 
element at ( ) ( )0T TL δ= −x x x . The receive locator (using the 4-element example of Figure 7) is 

( ) ( )3
00R TmL mdδ== − −∑x x x , where d is the receive element spacing. The VA for just the first 

transmission is then ( ) ( )( )( )3
0 00 2TR T TmL mdδ== − + −∑x x x x  = ( )( )3

00 2Tm m dδ= − −∑ x x , 

which is the half-size 4-element array labeled “Pulse #1” in the figure. On the second pulse, the physical 
array is shifted over by NRd/2 = 2d so that ( ) ( )0 2T TL dδ= − −x x x , and the process is repeated. The 

complete VA is the assemblage of the component VAs created by each pulse transmission. The filled 
sparse array example calculations are much the same as those of the vernier array, with the difference 
that transmission occurs from all three transmit elements at the same time. The filled VA is then created 
on a single transmission. 

For the two-dimensional example of Figure 9 we will write the locator function explicitly in terms of the 

two coordinates x and y. The transmit locator function is ( ) ( )3
1, 0,T mL x y y mdδ== −∑  and the 

receiver locator function is ( ) ( )3
1, , 0R nL x y x ndδ== −∑ . Using Eq. (2), the resulting VA locator 

function is ( ) 3 3
1 1, ,

2 2TR m n
d dL x y x m y nδ= =

 = − − 
 

∑ ∑ , which describes the result shown in the figure. 

9 Virtual Arrays (huuuh!), What Are They Good For? 
More than absolutely nothin’. 

But why is the VA concept useful? For instance, does it simplify the calculation of important system 
characteristics, or lead to easier means of designing array systems to have certain properties? This is not 
clear to me yet. What we have seen is that: 

• Given a physical transmit and receive array pair, the corresponding virtual array describes the 
effective set of spatial locations from which the target reflectivity is sampled. That is, 
independently operating a monostatic T-R element at each of the VA element locations will 
provide the same set of phase measurements as the physical configuration. This may be useful 
in analyzing spatial sampling requirements. 

• Although we have only hinted at this through examples, it appears possible, at least in some 
cases, to design physical configurations that will provide desired sampling patterns while 
economizing on physical elements or other system characteristics. 

• The virtual array for a given physical T-R array configuration is unique. 
• The converse is not true; in at least some cases there can be more than one physical T-R array 

configuration that produces the same VA. I do not know under what conditions, if any, a 
particular VA can only be generated by a unique T-R physical array. 
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10 What’s Missing? 
The virtual array does not directly support the calculation of one- or two-way array factors; therefore it 
does not support calculation of antenna gains, mainlobe widths and angular resolution, or sidelobe 
structure, all important system characteristics. Calculating these metrics requires knowledge of the 
physical or virtual array geometry, but also knowledge of the manner in which the signals transmitted 
and received at each physical element (the “beamforming” utilized in the system) are combined. That 
will be the task of the next memo in this series [12]. 
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