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1 The Phase Center of an Antenna 
The phase center of an antenna is defined as [1] 

“The location of a point associated with an antenna such that, if it is taken as the center of a 
sphere whose radius extends into the far-field, the phase of a given field component over the 
surface of the radiation sphere is essentially constant, at least over that portion of the surface 
where the radiation is significant.” 

This means that for a fixed range (the sphere radius), the phase should be independent of the angle(s) of 
the point of interest relative to the antenna orientation at any given time. This is equivalent to saying 
that the phase front (surface of constant phase) should be spherical. The phrase “radius extends into the 
far-field” means that the range at which the field phase is evaluated is in the far field of the antenna, 

generally taken as a range greater than 22d λ , where d is the antenna size and λ is the wavelength; 

see Section 6. The phrase “at least over that portion of the surface where the radiation is significant” 
means that the condition need be met only over the mainbeam of a conventional directive antenna 
pattern. The adjective “essentially” allows for an approximately, but not exactly, spherical phase front. 
No approximation tolerance is specified in the definition. 

We assume that we are interested in using coherent (quadrature, I/Q) receivers and signal processing, 
and so we model real sinusoidal signals using their complex equivalents throughout this memo [2]. A 
monochromatic electromagnetic (EM) wave is therefore modeled as having an electric field amplitude 

that varies with time at the source as ( ) ( )0 0exp 2x t A j F tπ φ = +   for some frequency F0 and initial 

phase φ0. This wave propagates a distance R in R/c seconds. The observed E-field amplitude (the signal) 
at the end of the propagation path will be 
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 (1) 

where k accounts for all amplitude factors due to propagation, e.g. the 1/R amplitude loss and any 
atmospheric losses. Equation (1) shows that after propagating a distance R the signal will exhibit a phase 
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shift of 2 Rπ λ−  radians with respect to the original transmitted signal. This means that the echo phase 

will vary significantly with wavelength-scale changes in the range between the radar and a target or 
clutter patch, or between the radar and an interference source (e.g., a jammer). Many radar signal 
processing operations rely on modeling the specific spatial and temporal patterns of target echo, clutter 
echo, and interference phase shifts observed at the radar (the phase histories) to achieve their 
processing goals. Consequently, the pattern of phase shifts as a function of antenna geometry and echo 
source location and movement relative to the radar are of great interest. 

2 Phase Center of an Isotropic Radiating Source 
Consider an isotropically radiating source at coordinate x = 0 on the x axis as shown in Figure 1. The 
source emits an EM wave whose electric field amplitude is modeled as varying with time at the source 

as ( ) ( )0 0exp 2x t A j F tπ φ = +  . A point scatterer P is located a distance RT away at an arbitrary angle 

θ with respect to the y coordinate as shown. 

 

 

Figure 1. Geometry of a single radiating source and a distant scatterer. 

 

The signal received at P will be 

 ( ) ( ) ( )0 0exp 2 exp 2Tx t kA j R j F tπ λ π φ′  = − +   (2) 

The signal phase observed at P is simply the sum of the phases of the two exponential terms. This is 
independent of the angle θ, so by the definition above, the phase center of this “antenna” is simply the 
radiating source location. 
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A similar conclusion applies if we consider an echo reflected from P and received back at xT. In this case 
the propagation distance is simply doubled, giving the received signal as 

 ( ) ( ) ( )2
0 0exp 4 exp 2Tx t k A j R j F tρ π λ π φ′′  = − +   (3) 

The constant ρ represents the effect on the amplitude of the scatterer itself, and so is related to the 
scatterer’s radar cross section (RCS). We have implicitly assumed that ρ is independent of the aspect 
angle from which the incoming EM wave arrives, i.e. the scatterer is nonfluctuating with respect to 
aspect angle. The phase of the received signal is still independent of θ. Although the definition of phase 
center in the previous section contemplates only one-way propagation, we can generalize it a bit to 
include propagation from a transmitter, reflection from a scatterer, and reception at a receiver. For 
transmission from xT and backscatter to a receiver at that same location, we can trivially say that the 
“phase center” for the transmit-receive (T-R) action is located at xT. 

If we are feeling quarrelsome we can point out that transmitting and receiving from any point in the 
plane at a distance RT from P will also produce the same phase shift because the one- and two-way path 
lengths are the same. Thus, any point on a circle of radius RT centered on P is an equally valid location 
for the phase center based on the criteria considered so far. To remove this ambiguity, we can invoke 
the phrase “… point associated with an antenna …” in the definition of the phase center. This suggests 
that, given multiple options for the phase center location, we should choose the one closest in proximity 
in some sense to the physical antenna. While “closest in proximity” is deliberately a bit vague, in this 
case we would choose the location of the T-R element, xT , as that point and therefore the phase center. 
The other, more distant options will be referred to here as phase-equivalent elements to the actual 
antenna element P. 

If the reflectivity of P varies with aspect angle, as will be the case with most real scatterers, that further 
encourages us to define the phase center as the phase-equivalent element closest to the actual element 
location, so that the aspect angles between the physical element and the phase center are as nearly 
equal as possible. 

In practice, the receiver will demodulate ( )x t′′  to obtain the received complex amplitude 

( )2
0

ˆ exp 4 TA k A j Rρ φ π λ = −  . The initial transmit phase φ0 obviously does not depend on θ, so to 

analyze the phase center of a given T-R element configuration, or whether it even has a defined phase 
center, it is sufficient in most of the remainder of this memorandum to consider just the T-R 
propagation path length and its dependence on θ. If that path length is some constant (or “essentially” 
constant) value 2Rpc over the desired range of θ (typically corresponding to the mainbeam of the 
configuration in question), then we can say that any valid phase-equivalent element for that 
configuration must be at a distance Rpc from P. Of these, the phase-equivalent element location 
“closest” to the configuration is the phase center for that pair. 
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3 A Transmit-Receive Element Pair and Their Phase Center 
Now add a second, separate isotropic antenna element at coordinate xR to serve as the receiver, 
forming a two-element linear array in the x coordinate. It is convenient to center the pair on x = 0, so if 
their separation is d, then xT = −d/2 and xR = +d/2 as shown in Figure 2. We define the angle θ with 
respect to a line of length RC from the origin to P. We assume xR > xT (receiver to the right of the origin, 
transmitter to the left) and 0 2θ π≤ ≤  for the moment, as shown. The T-R path length is RT + RR. 

Assume “closely spaced” transmit and receive elements in the sense that Cd R
, i.e. the distance to P 

is much greater than the separation of the two elements. (Generalizing, we will say an array is compact 
when its dimensions are small compared to the nominal distance to P.) We also effectively assume that 
the scatterer’s bistatic RCS is nonfluctuating with respect to the angles to both the transmit and receive 
elements. 

We can compute the transmit and receive path lengths RT and RR using the law of cosines: 
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Similarly, 
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 (5) 

 

 

Figure 2. Geometry of two-element transmit-receive array. 
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The received phase is determined entirely by the T-R path length T RR R+ . Define 

( )R T C Cx x R d Rδ = − =  and write T RR R+  as follows: 

 
( ) ( )2 21 2 sin 1 2 sin

1 1

T R C C

C T C R

R R R R

R z R z

δ δ θ δ δ θ+ = + + + + −

= + + +
 (6) 

where ( )22 sinTz δ δ θ= +  and ( )22 sinRz δ δ θ= − . The Maclaurin series for 1 z+  is 
2 31 2 8 16z z z+ − + −  . Under the compact assumption, 1δ   and 2

, 4 1T Rz δ δ< + 
 (zT,R refers 

to either zT or zR). We can therefore approximate the T-R path length by keeping only the first two terms 
of the series: 

 
2

2 2 1
2 8

T R
T R C C

z zR R R R δ +   + ≈ + = +   
    

 (7) 

Repeating this analysis for the case where xR < xT or for 2 0π θ− ≤ ≤ shows that Eq. (7) applies for 

those cases also. 

Equation (7) shows that the T-R path length is independent of θ (to within the accuracy of the 
approximation, which we will consider in the next section). Note that the equivalent sphere radius is 
larger than RC, but only slightly so. It will be seen in Section 6 that in normal “far-field” operation, this 
difference is negligible. In this case, the two-way path length is well-approximated just 2RC, so that the 
radius of the circle of phase-equivalent element locations is RC. It then follows that x = 0 is the phase 
center location for the T-R pair because that point has the minimum combined distance to the T and R 
elements of any location on the circle of radius RC and is therefore closest in proximity to the antenna 
defined by the T-R pair. 

For the record: including the z2/8 term of the Maclaurin series for greater accuracy would result in the 
second-order approximation 

 ( ) ( )( ){ } ( ) ( )( ){ }2 2 4 2 22 1 8 1 sin 128 2 1 8 1 sinT R C CR R R Rδ θ δ δ θ+ ≈ + − + ≈ + −  (8) 

The sin2θ term introduces a slight dependence of the T-R path length on θ, showing that there is no 
exact, fixed phase-equivalent element range for the T-R pair, and that x = 0 is only approximately the 
phase center; but again, that approximation is quite good in most practical circumstances. 
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4 The Virtual Element 
Define the virtual element (VE) corresponding to a transmit-receive element pair to be a single 
combined T-R element that emits the same waveform as the transmit element of the pair; produces the 
same received complex amplitude as observed at the receive element of the pair; and is located at the 
phase center of the T-R element pair. For the single transmit and receive elements discussed so far and 
under far-field conditions, 

• The VE exists; 
• The VE is located at the midpoint of the line connecting them (x = 0 in our example); and 

• The VE has the same transmit complex amplitude Â  as our transmit-only element. 

Also, notice that the roles of the transmit and receive elements can be reversed without changing the 
received amplitude or phase, or the location of the VE. 

Assuming the reflectivity ρ of P is nonfluctuating in aspect angle, a single T-R element located at any 
phase-equivalent element location would also produce the same phase history as the VE. It is only the 
requirement that the element be “close” the physical T-R pair that makes the VE location unique. If the 
reflectivity of P does vary with aspect angle, it would provide another reason to locate the VE close to 
the T-R pair so as to maintain the same reflectivity and therefore the same received complex amplitude. 

5 Channels 
Borrowing some terminology from communications, we can call the path from a transmit source to a 
scatterer and then to a receive source a single channel. The results so far show that a bistatic channel 
such as that of Figure 2 is equivalent to a monostatic channel originating and ending at the VE. That is, 
both produce the same received waveform, specifically including the same phase shift of the received 
echo and, assuming still that the bistatic reflectivity is isotropic, the same amplitude. Again, the roles of 
the transmit and receive elements can be reversed without changing the received amplitude or phase. 

6 Approximation Error and the Far-Field Condition 
The error in approximating RT + RR of Eq. (6) by the first-order approximation of Eq. (7) is RC times the 

error in approximating the quantity ( )1 1T Rz z+ + + . Consider the error ( )zε  in replacing 1 z+  

by the first-order approximation 1 2z+ . Since this is the error in each of the two square root 

approximations, the upper bound on the error in approximating RT + RR will be ( ){ }2maxC
z

R zε⋅ . The 

Lagrange form of the Taylor series remainder estimation theorem [3] gives us 

 ( ) ( )
2 22

2 3
2

1
2! 8 1

z zdz z
dz z

ε ≤ + ⋅ =
+

 (9) 
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This error is maximum when z  takes on its maximum value. Since ( )2, 2 sinT Rz δ δ θ= ±  and 1δ  , 

the maximum value of either Tz  or Rz  is approximately δ (occurring when θ = 2π± ), giving 

 ( )
( )

2 2

3
2 22 1 2

z δ δε
δ

≤ ≤
+

 (10) 

Require that the error in the estimate of R TR R+ be less than λ/8 so that the error in the two-way T-R 
phase is no more than 45°. Our condition becomes 

 
2 222   or  

8 8 2 2
C

C C
C

R dR d R
R

λδ λ λδ
λ

< ⇒ < ⇒ < >  (11) 

Equation (11) is a typical expression of the antenna size limit for which the Fraunhofer approximation to 
the scalar diffraction expression of antenna radiation is valid [4]. The last form given in the equation is a 
common definition of the far field distance from an antenna [4]. In practical radar applications of 
interest, the range from each antenna to a scatterer will normally be far beyond this far-field distance, 
so going forward we will assume this is always true. This means that in replacing a T-R element pair by 
the corresponding virtual element, we are guaranteed that the errors in computing the phase of the 
received signal will be less (usually much less) than 45°. 

7 Three-Dimensional Extension 
Although developed in two dimensions, the conclusions so far are valid in three-dimensional space. No 
matter what the location of the transmit and receive elements and the scatterer P in 3D space, the 
coordinates can always be rotated and translated to place the transmit and receive elements on the x 
axis, symmetric around x = 0, and then to place P in the x-y plane as shown in Figure 2. The VE will then 
be at the midpoint of the line connecting the transmit and receive elements (x = 0 in the transformed 
coordinates). 

8 The Parallel Ray Approximation 
Consider the one-way path from xT to P in comparison to the path length from the VE to P. We know 

that 1T C TR R z= + , with ( )22 sinTz δ δ θ= + . The first-order Maclaurin series approximation to RT is 

 
2

1 1 sin
2 2 8
T

T C C
zR R R δ δθ

   ≈ + = + +   
    

 (12) 

We can simplify further if ( )2 8 2 sin 4sinδ δ θ δ θ⇒  . Then 



M. A. Richards, “Virtual Arrays, Part 1: 
Phase Centers and Virtual Elements” Feb. 12, 2019 

 

8 | P a g e  
 

 1 sin sin
2 2T C c

dR R Rδ θ θ ≈ + = + 
 

 (13) 

Similarly, ( )2 sinR cR R d θ≈ − . The validity of this approximation will be considered shortly. Figure 3 

shows that Eq. (13) is equivalent to assuming that P is far enough away that the vectors from xT and the 
origin (the VE) are approximately parallel. 

The two-way T-R path length under this “parallel ray” approximation is 

 2T R CR R R+ ≈  (14) 

which is simply the two-way path length from the VE to P and back. This approximation differs by 
2 24 4C CR d Rδ =  from the result of Eq. (7). In the usual far-field operation, this difference is less 

(usually much less) than λ/8 and is insignificant. 

 

 

Figure 3. Parallel-line approximation to range difference for distant scatterers. 

 

The parallel ray approximation assumption that 4sinδ θ  will fail for θ sufficiently near zero. In the 

very small region over which this typically occurs, we have instead from Eq. (12) { }21 8T CR R δ≈ + .1 

Once more, in the far-field that difference between this result and that of Eq. (14) is not significant. 

                                                           
1 This is just the one-way equivalent of Eq. (7). 
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9 Sequels: Virtual Arrays, Coarrays, and MIMO Radar 
In part 2 this memo series we will start with these results and use them to describe the ideas of virtual 
arrays and coarrays [5]. Once we have figured those out, future memos in this series will build upon 
those ideas to investigate the antenna patterns of VAs, and finally to introduce multiple-input, multiple-
output (MIMO) radar arrays. 
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