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2 Problem Statement 

Consider a simple baseband pulse x(t) of amplitude A and duration  embedded in additive stationary 

white Gaussian noise (WGN) w(t). The spectrum X(F) of the pulse is the sinc function  sinA F F   , 

which has a peak amplitude of A  and a Rayleigh (peak-to-first-null) bandwidth of 1/ Hz. Assume the 

noise has a two-sided power spectral density (PSD) of N0 W/Hz. 

The signal      y t x t w t   is passed through the matched filter for the rectangular pulse. The impulse 

response of the matched filter is a rectangular pulse of amplitude  and duration . Its frequency 

response H(F) =  sin F F     has peak amplitude a and Rayleigh bandwidth 1/ Hz. The purpose of 

this memo is to determine the effect of the matched filter on the signal-to-noise ratio (SNR) of the signal 

by computing the SNR before and after the matched filter operation. 

3 SNR Before Matched Filtering 

Signal: We define SNR as the peak signal power (voltage squared), divided by the average noise power. 

Before the matched filter, the signal amplitude is simply A, so the signal peak power is S = A2. 

Noise: To get a value for average noise power, it is necessary to define a finite bandwidth Bobs through 

which the noise is observed; otherwise, the noise power would be infinite. In order to pass the pulse 

with no significant distortion or loss of energy, Bobs must include essentially all of the energy in x(t), and 

therefore must include “many” sidelobes of X(F). The noise power viewed through this bandwidth is 

N = obs 0B N . 

Combining these results give the SNR prior to matched filtering as 
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4 SNR After Matched Filtering 

Signal: The output of the matched filter in response to the input pulse will be a triangle of length 2 and 

peak amplitude A; see section 4.2.2 in [1] for this calculation. The post-matched filter signal peak 

power is therefore 2 2 2
mfA S   . 

Noise: The noise PSD at the matched filter output will be the input PSD times the “power spectrum” of 

the matched filter, i.e.  
2

0N H F . The noise power at the output is obtained by integrating this PSD 

over frequency and applying Parseval’s theorem. 

    
2 2 2

mf 0 0 0N N H F dF N h t dt N  
 

 

      (2) 

The SNR after matched filtering is 
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
     (3) 

To facilitate the “before” vs. “after” comparison of Eqs. (1) and (3), it is useful to recall the concept of 

noise-equivalent bandwidth Bne. Bne is the bandwidth of an ideal lowpass filter that has the same 

maximum power gain as H(F) and the passes the same amount of white noise power to its output as 

does the actual system frequency response H(F). Bne therefore satisfies ([1], Eq. (2.78)) 
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Parseval’s theorem has again been used to get the second form, which in turn has been used to 

compute Bne for the simple pulse matched filter. Notice that the noise equivalent bandwidth equals the 

Rayleigh bandwidth in this example. This also means obs neB B . 

The matched filter output noise power can now be expressed as 2 2
mf 0 ne mf 0 neN N B G N B    , where 

Gmf is the matched filter power gain.  The output SNR becomes 
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     (5) 

Comparing Eqs. (1) and (5) shows that the matched filter has increased the SNR by the factor obs neB B . 

While this sounds like an SNR gain, it should probably not be thought of in those terms. The reason is 

that the observation bandwidth Bobs may not correspond to the actual bandwidth of any component of 

the radar system, but instead is a mathematical convenience used to define a finite input noise power. 
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5 Additional Comments 

5.1 Discrete-Time Case 
In a digital implementation of the matched filter or other receiver filter, assume the simple pulse is 

represented by M samples over its length of  seconds. That is, the sampling interval is Ts = /M seconds 

and the sampling frequency is Fs = 1/Ts = M/ samples/second, which is M times the nominal pulse 

bandwidth (and therefore Nyquist sampling rate) of 1/ Hz again. This implies that the analog signal has 

been bandpass filtered to a bandwidth of M/ Hz prior to the sampling operation (analog-to-digital 

conversion, ADC) to avoid aliasing. Effectively, Bobs = M/ Hz. The increase in SNR from the output of the 

pre-sampling filter to the output of the matched filter is then obs neB B M . This increase might 

reasonably be considered a gain due to the matched filter relative to the SNR that existed at the ADC 

output. 

5.2 Simple Pulse vs. Pulse Compression Waveforms 
It is shown in [1] that, in general, the peak SNR at the output of a filter matched to a particular 

waveform is 0E N , where E is the waveform energy.  For the simple pulse 2E A  , so that Eq. (3) is 

consistent with this claim. Also recall that when the matched filter is used, the time resolution at the 

output equals 1/B Hz, where B is the waveform bandwidth [1]. 

The rectangular pulse has the property that its time-bandwidth product (TBP, waveform duration times 

waveform bandwidth) equals 1, assuming the bandwidth is taken as 1/ Hz. That choice of bandwidth is 

somewhat arbitrary, since a rectangular pulse is not strictly bandlimited. However, it is in common use. 

It equals the 4 dB bandwidth, the Rayleigh bandwidth, and (as we have seen) the noise-equivalent 

bandwidth of the pulse. On the other hand, it captures only 78% of the total energy in the pulse power 

spectrum  
2

X F . 

Pulse compression waveforms have TBPs greater than 1, often much greater. Consider a waveform of 

amplitude A, duration  seconds, and bandwidth  1 , 1B k k  Hz so that the TBP = k  1. This 

waveform has the same energy as the simple pulse used above, and so will exhibit the same peak SNR at 

the output of its matched filter.1 However, the pulse compression waveform will have a time (thus 

range) resolution that is 1/k that of the simple pulse because of its wider bandwidth. Therefore, the use 

of pulse compression provides a factor of k improvement in range resolution relative to a simple pulse 

providing the same SNR. Alternatively, a simple pulse having the same range resolution as the pulse 

compression waveform will have to be shorter by a factor of k, i.e. a duration of /k seconds. This will 

reduce its energy and therefore SNR at the matched filter output by a factor of k. In this comparison, 

pulse compression produces an SNR gain of a factor of k compared to a simple pulse of the same range 

resolution. 

                                                           
1 Each waveform is processed through its own matched filter, which are not the same since the waveforms aren’t 
the same. 
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5.3 Bandpass Receiver Filter 
Many radar systems, particularly older or simpler ones lacking modern digital receivers, may have a 

frequency response that is approximately an ideal bandpass filter (BPF) rather than a true matched 

filter. This raises the question of how one should choose the BPF bandwidth to maximize the output 

SNR, and how much less that SNR is than the maximum SNR provided by the matched filter. This 

question is addressed in [2], which repeats and discusses an analysis from 1963. In short, the answer is 

that the maximum SNR occurs when the two-sided BPF bandwidth equals 1.37/ Hz (cutoff frequency = 

0.685/ Hz). At that bandwidth, the SNR at the filter output is 82% of the matched filter SNR, a loss of 

0.84 dB. 
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