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A Numerical Issue in Computing the Rician and Non-central Chi-Square 
Probability Density Functions 

 
Consider a random variable x  = m + z, where m is a (possibly complex) constant and z is 
complex noise with i.i.d. zero-mean Gaussian real and imaginary parts of variance 2 2zσ ; 

thus the total noise variance is 2
zσ .  Let X = x .  The probability density function (pdf) of 

X is the Rician distribution [1] 
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The pdf of Y = X2 is a non-central chi-square distribution [1] 
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 (2) 

 
Both the Rician and non-central chi-square pdfs involve the product of a decaying 
exponential and a zeroth-order modified Bessel function I0(x). MATLAB provides a 
modified Bessel function call, besseli(order,argument).  For instance, Eqn. (1) 
can be expressed in MATLAB as  
 

b = m; 
c = sqrt(sigz^2/2); 
p(X) = (X/c^2).*exp(-(X.^2+b^2)/2/c^2).*besseli(0,X*b/c^2); 

 
Unfortunately, the computation of I0(X) overflows in besseli for X > 700.  This occurs 
because, for large X, I0(X) is proportional to ex.  The Rician or non-central chi-square are 
themselves well-behaved, because they are the product of this growing exponential with a 
more rapidly decaying (quadratic vs. linear argument) exponential.  Nonetheless, since 
the two terms are computed separately in the line above, the computation overflows. 
 
This problem can be solved by using a large-argument approximation to I0(X).  
Specifically [2], 
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For X > 12.5, the second term in the sum is less than 1% of the first term; for X > 125 it is 
less than 0.1%.  At the same time, this is well within the range of arguments for which 
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the besseli(0,X) function converges.  Thus we can use besseli() for X less than 
100 or so, and for x greater than 100, Eqn. (3) simplifies to simply 
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Using this in (1) gives the better-behaved expression 
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A MATLAB function called rician was written to compute the Rician pdf.  It uses (1) 
for arguments less than 200, and (5) for arguments greater than 200.  A listing is included 
at the end of this memorandum. 
 
The same issue occurs in computation of the non-central chi-square distribution of (2). 
Using the approximation (4) again gives 
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Again, a MATLAB function called noncentralchisquare was written to compute 
the non-central chi-square pdf.  It uses (2) for arguments less than 200, and (6) for 
arguments greater than 200.  A listing is included at the end of this memorandum. 
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Listing of rician.m 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% function rician(a,b,c) 
% 
% function defined to compute Rician for large arguments, where MATLAB's 
% besseli(0,x) overflows.  Uses approximation that, for large x, I0(x) ~= 
% (1/sqrt(2*pi*x))*exp(x). 
% 
%  Specifically, we compute the function 
%  p(a) = (a/c^2)*exp(-(a.^2+b^2)/2/c^2)*I0(a*b/c^2) 
% 
%  'a' is a vector ranging over the range of interest 
%  'b' and 'c' are constants 
% 
% M. A. Richards, May 2006 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function p = rician(a,b,c) 
  
p = zeros(size(a)); 
kb = find(2*a*b/c^2<200);  % besseli(0,x) doesn't actually blow until x > 700 
ka = find(2*a*b/c^2>=200); 
  
p(kb) = (a(kb)/c^2).*exp(-(a(kb).^2+b^2)/2/c^2).*besseli(0,a(kb)*b/c^2); 
p(ka) = sqrt(a(ka)/(2*pi*b*c^2)).*exp(-(a(ka)-b).^2/2/c^2); 
  
end 

 
Listing of noncentralchisquare.m 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% function noncentralchisquare(a,b,c) 
% 
% function defined to compute non-central chi-square density for large 
% arguments, where MATLAB's besseli(0,x) overflows.  Uses approximation 
% that, for large x, I0(x) ~= (1/sqrt(2*pi*x))*exp(x). 
% 
%  Specifically, we compute the function 
%  p(a) = (1/2/c^2)*exp(-(a+b^2)/2/c^2)*I0(sqrt(a)*b/c^2) 
% 
%  'a' is a vector ranging over the range of interest 
%  'b' and 'c' are constants 
% 
% M. A. Richards, May 2006 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function p = noncentralchisquare(a,b,c) 
  
p = zeros(size(a)); 
kb = find(sqrt(a)*b/c^2<200);  % besseli(0,x) doesn't actually blow until x > 
700 
ka = find(sqrt(a)*b/c^2>=200); 
  
p(kb) = (1/2/c^2)*exp(-(a(kb)+b^2)/2/c^2).*besseli(0,sqrt(a(kb))*b/c^2); 
p(ka) = (1/c./sqrt(8*pi*b*sqrt(a(ka)))).*exp(-(sqrt(a(ka))-b).^2/2/c^2); 
  
end 

 


