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Problem Statement 
Reference [1] discusses the use of zero padding of discrete Fourier transforms (DFTs) as a means of 

interpolating the signal to a higher sampling rate. Only integer upsampling ratios are considered. In this 

note we generalize that result, considering an increase of the DFT size from K1 to any new size K2 > K1. 

We also show that the technique implies interpolation of new samples with a Dirichlet function, often 

called an “aliased sinc” (asinc) or “digital sinc” (dsinc) function, as might be expected for bandlimited 

interpolation. 

Let x1[n] be a sequence of length N. Let X1[k] be the K1-point DFT of x1, K1 ≥ N. Assume that K1 is odd; 

we will deal with the even K1 case later. Form a new, larger K2-point DFT, K2 > K1, using the technique 

described in [1]. Finally, compute the inverse DFT of X2[k] to obtain the new sequence x2[n]. Our goal is 

to determine how x2 is related to x1. 

The Case of K1 Being Odd 
By definition of the inverse DFT, we have 
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Using the relationship between X2 and X1 defined in [1], this becomes 
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where we have used the fact that exp(j2nK2/K2) = 1 in the last step. Now perform a change of variable 

k =kK1 in the second summation, giving 
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The second line used the fact that X1[k] has period K1. Define  = (K11)/2 for brevity, insert the 

definition of X1 as the DFT of x1, and interchange summations: 
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where we have defined  2 12 n K m K   , again for brevity. The second summation is the 

interpolating function that defines the weights by which samples of x1 are combined to form samples of 

x2. We denote this function as Q(n,m;K1,K2).  Q is a function of the two variables n and m, and has two 

parameters, K1 and K2. 

Using the geometric sum formula, we can get a closed form for Q: 
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Using L’Hospital’s rule, it is easy to establish that the peak value of Q, which occurs when  = 0, is K1. 

Also note that   1 1 22K K K n m   . 

Equations (4) and (5) (and Eq. (9), yet to come) are the principal results of this note. They show that 

zero-padding the DFT of a sequence x1 produces a longer sequence x2 which is obtained by Dirichlet 
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interpolation of the values of x1. At appropriate sample locations, x2 exactly matches x1. The case of 

upsampling by an integer factor D that was considered in [1] is a special case of the analysis here with 

K2 = D·K2. 

The intent of this procedure is to increase the sampling rate by the ratio K2/K1. As a result, we would 

expect x2[n] to equal x1[m] whenever n = (K2/K1)m. This will be the case if, for a given value of n in Eq. 

(4), Q takes on the value K1 for any m such that n = (K2/K1)m, and a value of zero for all other m. To see 

that this property is satisfied, substitute (K2/K1)m for n in the definition of . The result is that  = 0 so 

that Q = K1 as desired. All other values of m for a given n can be considered to be of the form m = 

(K1/K2)n−l for some integer l ≠ 0.In this case  = 2l/K1. Then the  1sin 2K  term of Q is zero, while 

the  sin 2  term is not. Thus, Q is zero for these values of m. 

If l is an integer multiple of K1, Q would again be nonzero. However, x1 is nonzero only for 

0 ≤ N1 ≤ K11, so x1[m] is itself zero for the resulting values of m and these values of m are not of 

concern. 

The Case of K1 Being Even 
The approach and many of the details for the even K1 case are the same as for the odd case. The 

difference is in the details of the interpolating function Q. Referring again to [1] for the manner in which 

the samples of X1 are distributed into X2, the equivalent of the key steps in Eqs. (2) and (3) is 
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The two middle terms in the first line of this equation are a result of the way the assignment of values 

from X1 to X2 is made, specifically the splitting of the middle sample of X1 in two, as described in [1]. 

Defining  = K1/21, keeping  as before, and inserting the definition of X1[k], the equivalent of Eq. (4) is 
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The (−1)
m term arose from the definition of X1[K1/2]. The summation term in Q can be put in closed 

form as 
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Thus, the interpolating function Q becomes 
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For the sanity check, consider the case where n = (K2/K1)m again. It is easy to see from (9) that the first 

term will be    1 cos 1
m

m  . Since  = 0 the second term reduces to K1−1, so that in total Q = K1, as 

desired. For the case where m = (K1/K2)n−l for some integer l ≠ 0 so that  = 2l/K1, the first term of Q 

becomes (−1)
l. The “sinc” portion of the second term becomes 
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In total, this gives Q = 0 as desired for these cases. 

Sampling Rate and Bandwidth Interpretation 
The DFT zero-padding process begins with a sequence of length K1 (possibly zero-padded from a shorter 

length N) and produces a new sequence of length K2. Suppose the original sequence x1[n] was obtained 

by sampling a continuous-time signal x1(t) at a sampling interval of T1 seconds. It then follows that the 

DTFT X1() covers a frequency range of width Fs1 = 1/T1 Hz.  The DFT X1[k] samples X1() every Fs1/K1 

Hz. But what is the effective sampling rate of x2[n]? 
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There is more than one reasonable interpretation. The most common use of this technique assumes 

that the DFT sample spacing is held constant, so that zero-padding from K1 to K2 frequency samples 

increases the bandwidth represented by the DFT by the factor K2/K1. This in turn implies a new time-

domain sampling rate of Fs2 = (K2/K1)Fs1 and a corresponding new sampling  interval of T2 = (K1/K2)T1. 

The total duration of x2[n] in seconds is then the same as that of x1[n], so the result is that x1 has been 

upsampled to a higher sampling rate. This viewpoint is the interpretation commonly applied to the use 

of DFT zero padding. 

One could just as easily assume that the sequence x2[n] retains the same original sampling rate of T1. In 

this case, the total bandwidth represented in X2 must still be Fs1 Hz. This implies that the zero padding of 

the DFT has compressed the original spectral data in X1 into a frequency interval that is smaller by the 

factor (K1/K2). The time sequence x2 is now longer in seconds than x1 by the factor (K2/K1). Under this 

interpretation, the process is viewed as stretching the time base of the signal. 
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