Resampling by DFT Zero Padding

Mark Richards March 9, 2012

Problem Statement

Reference [1] discusses the use of zero padding of discrete Fourier transforms (DFTs) as a means of interpolating the signal to a higher sampling rate. Only integer upsampling ratios are considered. In this note we generalize that result, considering an increase of the DFT size from K_1 to any new size $K_2 > K_1$. We also show that the technique implies interpolation of new samples with a Dirichlet function, often called an "aliased sinc" (asinc) or "digital sinc" (dsinc) function, as might be expected for bandlimited interpolation.

Let $x_1[n]$ be a sequence of length N. Let $X_1[k]$ be the K_1 -point DFT of $x_1, K_1 \ge N$. Assume that K_1 is odd; we will deal with the even K_1 case later. Form a new, larger K_2 -point DFT, $K_2 > K_1$, using the technique described in [1]. Finally, compute the inverse DFT of $X_2[k]$ to obtain the new sequence $x_2[n]$. Our goal is to determine how x_2 is related to x_1 .

The Case of K₁ Being Odd

By definition of the inverse DFT, we have

$$x_2[n] = \frac{1}{K_2} \sum_{k=0}^{K_2 - 1} X_2[k] e^{j2\pi nk/K_2}, \quad n = 0, \dots, K_2 - 1$$
(1)

Using the relationship between X_2 and X_1 defined in [1], this becomes

$$x_{2}[n] = \frac{1}{K_{2}} \left\{ \sum_{k=0}^{(K_{1}-1)/2} \frac{K_{2}}{K_{1}} X_{1}[k] e^{j2\pi nk/K_{2}} + \sum_{k=(K_{1}+1)/2}^{K_{1}-1} \frac{K_{2}}{K_{1}} X_{1}[k] e^{j2\pi n(k+K_{2}-K_{1})/K_{2}} \right\}$$

$$= \frac{1}{K_{1}} \left\{ \sum_{k=0}^{(K_{1}-1)/2} X_{1}[k] e^{j2\pi nk/K_{2}} + \sum_{k=(K_{1}+1)/2}^{K_{1}-1} X_{1}[k] e^{j2\pi n(k-K_{1})/K_{2}} \right\}$$
(2)

where we have used the fact that $\exp(j2\pi nK_2/K_2) = 1$ in the last step. Now perform a change of variable $k' = k - K_1$ in the second summation, giving

$$x_{2}[n] = \frac{1}{K_{1}} \left\{ \sum_{k=0}^{(K_{1}-1)/2} X_{1}[k] e^{j2\pi nk/K_{2}} + \sum_{k=-(K_{1}-1)/2}^{-1} X_{1}[k+K_{1}] e^{j2\pi nk/K_{2}} \right\}$$

$$= \frac{1}{K_{1}} \left\{ \sum_{k=0}^{(K_{1}-1)/2} X_{1}[k] e^{j2\pi nk/K_{2}} + \sum_{k=-(K_{1}-1)/2}^{-1} X_{1}[k] e^{j2\pi nk/K_{2}} \right\}$$

$$= \frac{1}{K_{1}} \sum_{k=-(K_{1}-1)/2}^{(K_{1}-1)/2} X_{1}[k] e^{j2\pi nk/K_{2}} \qquad (K_{1} \text{ odd})$$
(3)

The second line used the fact that $X_1[k]$ has period K_1 . Define $\alpha = (K_1-1)/2$ for brevity, insert the definition of X_1 as the DFT of x_1 , and interchange summations:

$$\begin{aligned} x_{2}[n] &= \frac{1}{K_{1}} \sum_{k=-\alpha}^{\alpha} \left(\sum_{m=0}^{N-1} x_{1}[m] e^{-j2\pi nk/K_{1}} \right) e^{j2\pi nk/K_{2}} \\ &= \frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m] \sum_{k=-\alpha}^{\alpha} \exp\left[j2\pi k \left(\frac{n}{K_{2}} - \frac{m}{K_{1}} \right) \right] \\ &= \frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m] \sum_{k=-\alpha}^{\alpha} \exp(j\beta k) \\ &= \frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m] Q(n,m;K_{1},K_{2}) \end{aligned}$$
(4)

where we have defined $\beta = 2\pi (n/K_2 - m/K_1)$, again for brevity. The second summation is the interpolating function that defines the weights by which samples of x_1 are combined to form samples of x_2 . We denote this function as $Q(n,m;K_1,K_2)$. Q is a function of the two variables n and m, and has two parameters, K_1 and K_2 .

Using the geometric sum formula, we can get a closed form for Q:

$$Q(n,m;K_1,K_2) = \sum_{k=-\alpha}^{\alpha} e^{j\beta k} = \sum_{k=0}^{2\alpha} e^{j\beta(k-\alpha)} = e^{-j\alpha\beta} \sum_{k=0}^{2\alpha} e^{j\beta k} = e^{-j\alpha\beta} \left\{ \frac{1 - e^{j(2\alpha+1)\beta}}{1 - e^{j\beta}} \right\}$$
$$= e^{-j\alpha\beta} \left\{ e^{+j\alpha\beta} \cdot \frac{\sin\left[\left(\beta/2\right)(2\alpha+1\right)\right]}{\sin\left(\beta/2\right)} \right\}$$
$$= \frac{\sin\left(\beta K_1/2\right)}{\sin\left(\beta/2\right)} \qquad (K_1 \text{ odd})$$
(5)

Using L'Hospital's rule, it is easy to establish that the peak value of Q, which occurs when $\beta = 0$, is K_1 . Also note that $\beta K_1/2 = \pi ((K_1/K_2)n - m)$.

Equations (4) and (5) (and Eq. (9), yet to come) are the principal results of this note. They show that zero-padding the DFT of a sequence x_1 produces a longer sequence x_2 which is obtained by Dirichlet

interpolation of the values of x_1 . At appropriate sample locations, x_2 exactly matches x_1 . The case of upsampling by an integer factor D that was considered in [1] is a special case of the analysis here with $K_2 = D \cdot K_2$.

The intent of this procedure is to increase the sampling rate by the ratio K_2/K_1 . As a result, we would expect $x_2[n]$ to equal $x_1[m]$ whenever $n = (K_2/K_1)m$. This will be the case if, for a given value of n in Eq. (4), Q takes on the value K_1 for any m such that $n = (K_2/K_1)m$, and a value of zero for all other m. To see that this property is satisfied, substitute $(K_2/K_1)m$ for n in the definition of β . The result is that $\beta = 0$ so that $Q = K_1$ as desired. All other values of m for a given n can be considered to be of the form m = $(K_1/K_2)n-l$ for some integer $l \neq 0$. In this case $\beta = 2\pi l/K_1$. Then the $\sin(\beta K_1/2)$ term of Q is zero, while the $\sin(\beta/2)$ term is not. Thus, Q is zero for these values of m.

If *l* is an integer multiple of K_1 , *Q* would again be nonzero. However, x_1 is nonzero only for $0 \le N-1 \le K_1-1$, so $x_1[m]$ is itself zero for the resulting values of *m* and these values of *m* are not of concern.

The Case of K₁ Being Even

The approach and many of the details for the even K_1 case are the same as for the odd case. The difference is in the details of the interpolating function Q. Referring again to [1] for the manner in which the samples of X_1 are distributed into X_2 , the equivalent of the key steps in Eqs. (2) and (3) is

$$\begin{aligned} x_{2}[n] &= \frac{1}{K_{2}} \begin{cases} K_{1}^{1/2-1} \frac{K_{2}}{K_{1}} X_{1}[k] e^{j2\pi nk/K_{2}} + \frac{1}{2} \frac{K_{2}}{K_{1}} X_{1}\left[\frac{K_{1}}{2}\right] e^{j2\pi nK_{1}/2K_{2}} + \dots \\ & \dots + \frac{1}{2} \frac{K_{2}}{K_{1}} X_{1}\left[\frac{K_{1}}{2}\right] e^{j2\pi n(K_{2}-K_{1}/2)/K_{2}} + \sum_{k=K_{1}/2+1}^{K_{1}-1} \frac{K_{2}}{K_{1}} X_{1}[k] e^{j2\pi n(k+K_{2}-K_{1})/K_{2}} \\ &= \frac{1}{K_{1}} \begin{cases} K_{1}/2^{-1} X_{1}[k] e^{j2\pi nk/K_{2}} + \frac{1}{2} X_{1}\left[\frac{K_{1}}{2}\right] e^{j\pi nK_{1}/K_{2}} + \dots \\ & \dots + \frac{1}{2} X_{1}\left[\frac{K_{1}}{2}\right] e^{-j\pi nK_{1}/K_{2}} + \sum_{k=K_{1}/2+1}^{K_{1}-1} X_{1}[k] e^{j2\pi n(k-K_{1})/K_{2}} \\ &= \frac{1}{K_{1}} \sum_{k=-(K_{1}/2-1)}^{K_{1}/2-1} X_{1}[k] e^{j2\pi nk/K_{2}} + X_{1}\left[\frac{K_{1}}{2}\right] \cos\left(\frac{K_{1}}{K_{2}}n\pi\right) \quad (K_{1} \text{ even}) \end{aligned}$$

The two middle terms in the first line of this equation are a result of the way the assignment of values from X_1 to X_2 is made, specifically the splitting of the middle sample of X_1 in two, as described in [1]. Defining $\gamma = K_1/2-1$, keeping β as before, and inserting the definition of $X_1[k]$, the equivalent of Eq. (4) is

$$x_{2}[n] = \frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m] \left\{ (-1)^{m} \cos\left(\frac{K_{1}}{K_{2}} n\pi\right) + \sum_{k=-\gamma}^{\gamma} \exp(j\beta k) \right\}$$

$$= \frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m] Q(n,m;K_{1},K_{2})$$
(7)

The $(-1)^m$ term arose from the definition of $X_1[K_1/2]$. The summation term in Q can be put in closed form as

$$\sum_{k=-\gamma}^{\gamma} e^{j\beta k} = \sum_{k=0}^{2\gamma} e^{j\beta(k-\gamma)} = e^{-j\gamma\beta} \sum_{k=0}^{2\gamma} e^{j\beta k} = e^{-j\gamma\beta} \left\{ \frac{1 - e^{j(2\gamma+1)\beta}}{1 - e^{j\beta}} \right\}$$
$$= e^{-j\gamma\beta} \cdot \left\{ e^{+j\gamma\beta} \cdot \frac{\sin\left[\left(\beta/2\right)(2\gamma+1)\right]}{\sin\left(\beta/2\right)} \right\}$$
$$= \frac{\sin\left[\beta(K_1 - 1)/2\right]}{\sin\left(\beta/2\right)}$$
(8)

Thus, the interpolating function Q becomes

$$Q(n,m;K_1,K_2) = (-1)^m \cos\left(\frac{K_1}{K_2}n\pi\right) + \frac{\sin\left[\beta(K_1-1)/2\right]}{\sin(\beta/2)} \qquad (K_1 \text{ even})$$
(9)

For the sanity check, consider the case where $n = (K_2/K_1)m$ again. It is easy to see from (9) that the first term will be $(-1)^m \cos(m\pi) = 1$. Since $\beta = 0$ the second term reduces to K_1-1 , so that in total $Q = K_1$, as desired. For the case where $m = (K_1/K_2)n-l$ for some integer $l \neq 0$ so that $\beta = 2\pi l/K_1$, the first term of Q becomes $(-1)^l$. The "sinc" portion of the second term becomes

$$\frac{\sin\left[\frac{2\pi l\left(K_{1}-1\right)}{2K_{1}}\right]}{\sin\left(\frac{2\pi l}{2K_{1}}\right)} = \frac{\sin\left(\pi l-\frac{\pi l}{K_{1}}\right)}{\sin\left(\frac{\pi l}{K_{1}}\right)} = -\frac{\sin\left(\frac{\pi l}{K_{1}}-\pi l\right)}{\sin\left(\frac{\pi l}{K_{1}}\right)} = -(-1)^{l}\frac{\sin\left(\frac{\pi l}{K_{1}}\right)}{\sin\left(\frac{\pi l}{K_{1}}\right)} = (-1)^{l+1}$$
(10)

In total, this gives Q = 0 as desired for these cases.

Sampling Rate and Bandwidth Interpretation

The DFT zero-padding process begins with a sequence of length K_1 (possibly zero-padded from a shorter length N) and produces a new sequence of length K_2 . Suppose the original sequence $x_1[n]$ was obtained by sampling a continuous-time signal $x_1(t)$ at a sampling interval of T_1 seconds. It then follows that the DTFT $X_1(\omega)$ covers a frequency range of width $F_{s1} = 1/T_1$ Hz. The DFT $X_1[k]$ samples $X_1(\omega)$ every F_{s1}/K_1 Hz. But what is the effective sampling rate of $x_2[n]$?

There is more than one reasonable interpretation. The most common use of this technique assumes that the DFT sample spacing is held constant, so that zero-padding from K_1 to K_2 frequency samples increases the bandwidth represented by the DFT by the factor K_2/K_1 . This in turn implies a new timedomain sampling rate of $F_{s2} = (K_2/K_1)F_{s1}$ and a corresponding new sampling interval of $T_2 = (K_1/K_2)T_1$. The total duration of $x_2[n]$ in seconds is then the same as that of $x_1[n]$, so the result is that x_1 has been upsampled to a higher sampling rate. This viewpoint is the interpretation commonly applied to the use of DFT zero padding.

One could just as easily assume that the sequence $x_2[n]$ retains the same original sampling rate of T_1 . In this case, the total bandwidth represented in X_2 must still be F_{s1} Hz. This implies that the zero padding of the DFT has compressed the original spectral data in X_1 into a frequency interval that is smaller by the factor (K_1/K_2) . The time sequence x_2 is now longer in seconds than x_1 by the factor (K_2/K_1) . Under this interpretation, the process is viewed as stretching the time base of the signal.

References

[1] M. A. Richards, "A Note on Upsampling by Integer Factors Using the DFT", technical memo, February 24, 2012. Available at www.radarsp.com.