Resampling by DFT Zero Padding

Mark Richards

March 9, 2012

Problem Statement

Reference [1] discusses the use of zero padding of discrete Fourier transforms (DFTs) as a means of interpolating the signal to a higher sampling rate. Only integer upsampling ratios are considered. In this note we generalize that result, considering an increase of the DFT size from K_{1} to any new size $K_{2}>K_{1}$. We also show that the technique implies interpolation of new samples with a Dirichlet function, often called an "aliased sinc" (asinc) or "digital sinc" (dsinc) function, as might be expected for bandlimited interpolation.

Let $x_{1}[n]$ be a sequence of length N. Let $X_{1}[k]$ be the K_{1}-point DFT of $x_{1}, K_{1} \geq N$. Assume that K_{1} is odd; we will deal with the even K_{1} case later. Form a new, larger K_{2}-point DFT, $K_{2}>K_{1}$, using the technique described in [1]. Finally, compute the inverse DFT of $X_{2}[k]$ to obtain the new sequence $x_{2}[n]$. Our goal is to determine how x_{2} is related to x_{1}.

The Case of K_{1} Being Odd

By definition of the inverse DFT, we have

$$
\begin{equation*}
x_{2}[n]=\frac{1}{K_{2}} \sum_{k=0}^{K_{2}-1} X_{2}[k] e^{j 2 \pi n k / K_{2}}, \quad n=0, \ldots, K_{2}-1 \tag{1}
\end{equation*}
$$

Using the relationship between X_{2} and X_{1} defined in [1], this becomes

$$
\begin{align*}
x_{2}[n] & =\frac{1}{K_{2}}\left\{\sum_{k=0}^{\left(K_{1}-1\right) / 2} \frac{K_{2}}{K_{1}} X_{1}[k] e^{j 2 \pi n k / K_{2}}+\sum_{k=\left(K_{1}+1\right) / 2}^{K_{1}-1} \frac{K_{2}}{K_{1}} X_{1}[k] e^{j 2 \pi n\left(k+K_{2}-K_{1}\right) / K_{2}}\right\} \tag{2}\\
& =\frac{1}{K_{1}}\left\{\sum_{k=0}^{\left(\left(K_{1}-1\right) / 2\right.} X_{1}[k] e^{j 2 \pi n k / K_{2}}+\sum_{k=\left(K_{1}+1\right) / 2}^{K_{1}-1} X_{1}[k] e^{j 2 \pi n\left(k-K_{1}\right) / K_{2}}\right\}
\end{align*}
$$

where we have used the fact that $\exp \left(j 2 \pi n K_{2} / K_{2}\right)=1$ in the last step. Now perform a change of variable $k^{\prime}=k-K_{1}$ in the second summation, giving

$$
\begin{align*}
x_{2}[n] & =\frac{1}{K_{1}}\left\{\sum_{k=0}^{\left(K_{1}-1\right) / 2} X_{1}[k] e^{j 2 \pi n k / K_{2}}+\sum_{k=-\left(K_{1}-1\right) / 2}^{-1} X_{1}\left[k+K_{1}\right] e^{j 2 \pi n k / K_{2}}\right\} \\
& =\frac{1}{K_{1}}\left\{\sum_{k=0}^{\left(K_{1}-1\right) / 2} X_{1}[k] e^{j 2 \pi n k / K_{2}}+\sum_{k=-\left(K_{1}-1\right) / 2}^{-1} X_{1}[k] e^{j 2 \pi n k / K_{2}}\right\} \tag{3}\\
& =\frac{1}{K_{1}} \sum_{k=-\left(K_{1}-1\right) / 2}^{\left(K_{1}-1\right) / 2} X_{1}[k] e^{j 2 \pi n k / K_{2}} \quad\left(K_{1} \text { odd }\right)
\end{align*}
$$

The second line used the fact that $X_{1}[k]$ has period K_{1}. Define $\alpha=\left(K_{1}-1\right) / 2$ for brevity, insert the definition of X_{1} as the DFT of x_{1}, and interchange summations:

$$
\begin{align*}
x_{2}[n] & =\frac{1}{K_{1}} \sum_{k=-\alpha}^{\alpha}\left(\sum_{m=0}^{N-1} x_{1}[m] e^{-j 2 \pi n k / K_{1}}\right) e^{j 2 \pi n k / K_{2}} \\
& =\frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m] \sum_{k=-\alpha}^{\alpha} \exp \left[j 2 \pi k\left(\frac{n}{K_{2}}-\frac{m}{K_{1}}\right)\right] \tag{4}\\
& =\frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m] \sum_{k=-\alpha}^{\alpha} \exp (j \beta k) \\
& =\frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m] Q\left(n, m ; K_{1}, K_{2}\right)
\end{align*}
$$

where we have defined $\beta=2 \pi\left(n / K_{2}-m / K_{1}\right)$, again for brevity. The second summation is the interpolating function that defines the weights by which samples of x_{1} are combined to form samples of x_{2}. We denote this function as $Q\left(n, m ; K_{1}, K_{2}\right) . Q$ is a function of the two variables n and m, and has two parameters, K_{1} and K_{2}.

Using the geometric sum formula, we can get a closed form for Q :

$$
\begin{align*}
Q\left(n, m ; K_{1}, K_{2}\right) & =\sum_{k=-\alpha}^{\alpha} e^{j \beta k}=\sum_{k=0}^{2 \alpha} e^{j \beta(k-\alpha)}=e^{-j \alpha \beta} \sum_{k=0}^{2 \alpha} e^{j \beta k}=e^{-j \alpha \beta}\left\{\frac{1-e^{j(2 \alpha+1) \beta}}{1-e^{j \beta}}\right\} \\
& =e^{-j \alpha \beta}\left\{e^{+j \alpha \beta} \cdot \frac{\sin [(\beta / 2)(2 \alpha+1)]}{\sin (\beta / 2)}\right\} \tag{5}\\
& =\frac{\sin \left(\beta K_{1} / 2\right)}{\sin (\beta / 2)} \quad\left(K_{1} \text { odd }\right)
\end{align*}
$$

Using L'Hospital's rule, it is easy to establish that the peak value of Q, which occurs when $\beta=0$, is K_{1}. Also note that $\beta K_{1} / 2=\pi\left(\left(K_{1} / K_{2}\right) n-m\right)$.

Equations (4) and (5) (and Eq. (9), yet to come) are the principal results of this note. They show that zero-padding the DFT of a sequence x_{1} produces a longer sequence x_{2} which is obtained by Dirichlet
interpolation of the values of x_{1}. At appropriate sample locations, x_{2} exactly matches x_{1}. The case of upsampling by an integer factor D that was considered in [1] is a special case of the analysis here with $K_{2}=D \cdot K_{2}$.

The intent of this procedure is to increase the sampling rate by the ratio K_{2} / K_{1}. As a result, we would expect $x_{2}[n]$ to equal $x_{1}[m]$ whenever $n=\left(K_{2} / K_{1}\right) m$. This will be the case if, for a given value of n in Eq. (4), Q takes on the value K_{1} for any m such that $n=\left(K_{2} / K_{1}\right) m$, and a value of zero for all other m. To see that this property is satisfied, substitute $\left(K_{2} / K_{1}\right) m$ for n in the definition of β. The result is that $\beta=0$ so that $Q=K_{1}$ as desired. All other values of m for a given n can be considered to be of the form $m=$ $\left(K_{1} / K_{2}\right) n-l$ for some integer $l \neq 0$. In this case $\beta=2 \pi l / K_{1}$. Then the $\sin \left(\beta K_{1} / 2\right)$ term of Q is zero, while the $\sin (\beta / 2)$ term is not. Thus, Q is zero for these values of m.

If l is an integer multiple of K_{1}, Q would again be nonzero. However, x_{1} is nonzero only for $0 \leq N-1 \leq K_{1}-1$, so $x_{1}[m]$ is itself zero for the resulting values of m and these values of m are not of concern.

The Case of K_{1} Being Even

The approach and many of the details for the even K_{1} case are the same as for the odd case. The difference is in the details of the interpolating function Q. Referring again to [1] for the manner in which the samples of X_{1} are distributed into X_{2}, the equivalent of the key steps in Eqs. (2) and (3) is

$$
\begin{align*}
& x_{2}[n]= \frac{1}{K_{2}}\left\{\sum_{k=0}^{K_{1} / 2-1} \frac{K_{2}}{K_{1}} X_{1}[k] e^{j 2 \pi n k / K_{2}}+\frac{1}{2} \frac{K_{2}}{K_{1}} X_{1}\left[\frac{K_{1}}{2}\right] e^{j 2 \pi n K_{1} / 2 K_{2}}+\ldots\right. \\
& \quad \ldots+\frac{1}{2} \frac{K_{2}}{K_{1}} X_{1}\left[\frac{K_{1}}{2}\right] e^{j 2 \pi n\left(K_{2}-K_{1} / 2\right) / K_{2}}+\sum_{k=K_{1} / 2+1}^{K_{1}-1} \frac{K_{2}}{K_{1}} X_{1}[k] e^{j 2 \pi n\left(k+K_{2}-K_{1}\right) / K_{2}} \\
& \sum_{k=0}^{K_{1} / 2-1} X_{1}[k] e^{j 2 \pi n k / K_{2}}+\frac{1}{2} X_{1}\left[\frac{K_{1}}{2}\right] e^{j \pi n K_{1} / K_{2}}+\ldots \tag{6}\\
& \quad \ldots+\frac{1}{2} X_{1}\left[\frac{K_{1}}{2}\right] e^{-j \pi n K_{1} / K_{2}}+\sum_{k=K_{1} / 2+1}^{K_{1}-1} X_{1}[k] e^{j 2 \pi n\left(k-K_{1}\right) / K_{2}} \\
&= \frac{1}{K_{1}} \sum_{k=-\left(K_{1} / 2-1\right)}^{K_{1} / 2-1} X_{1}[k] e^{j 2 \pi n k / K_{2}}+X_{1}\left[\frac{K_{1}}{2}\right] \cos \left(\frac{K_{1}}{K_{2}} n \pi\right) \quad\left(K_{1} \text { even }\right)
\end{align*}
$$

The two middle terms in the first line of this equation are a result of the way the assignment of values from X_{1} to X_{2} is made, specifically the splitting of the middle sample of X_{1} in two, as described in [1]. Defining $\gamma=K_{1} / 2-1$, keeping β as before, and inserting the definition of $X_{1}[k]$, the equivalent of Eq. (4) is

$$
\begin{align*}
x_{2}[n] & =\frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m]\left\{(-1)^{m} \cos \left(\frac{K_{1}}{K_{2}} n \pi\right)+\sum_{k=-\gamma}^{\gamma} \exp (j \beta k)\right\} \tag{7}\\
& =\frac{1}{K_{1}} \sum_{m=0}^{N-1} x_{1}[m] Q\left(n, m ; K_{1}, K_{2}\right)
\end{align*}
$$

The $(-1)^{m}$ term arose from the definition of $X_{1}\left[K_{1} / 2\right]$. The summation term in Q can be put in closed form as

$$
\begin{align*}
\sum_{k=-\gamma}^{\gamma} e^{j \beta k} & =\sum_{k=0}^{2 \gamma} e^{j \beta(k-\gamma)}=e^{-j \gamma \beta} \sum_{k=0}^{2 \gamma} e^{j \beta k}=e^{-j \gamma \beta}\left\{\frac{1-e^{j(2 \gamma+1) \beta}}{1-e^{j \beta}}\right\} \\
& =e^{-j \gamma \beta} \cdot\left\{e^{+j \gamma \beta} \cdot \frac{\sin [(\beta / 2)(2 \gamma+1)]}{\sin (\beta / 2)}\right\} \tag{8}\\
& =\frac{\sin \left[\beta\left(K_{1}-1\right) / 2\right]}{\sin (\beta / 2)}
\end{align*}
$$

Thus, the interpolating function Q becomes

$$
\begin{equation*}
Q\left(n, m ; K_{1}, K_{2}\right)=(-1)^{m} \cos \left(\frac{K_{1}}{K_{2}} n \pi\right)+\frac{\sin \left[\beta\left(K_{1}-1\right) / 2\right]}{\sin (\beta / 2)} \quad\left(K_{1} \text { even }\right) \tag{9}
\end{equation*}
$$

For the sanity check, consider the case where $n=\left(K_{2} / K_{1}\right) m$ again. It is easy to see from (9) that the first term will be $(-1)^{m} \cos (m \pi)=1$. Since $\beta=0$ the second term reduces to $K_{1}-1$, so that in total $Q=K_{1}$, as desired. For the case where $m=\left(K_{1} / K_{2}\right) n-l$ for some integer $l \neq 0$ so that $\beta=2 \pi l / K_{1}$, the first term of Q becomes $(-1)^{l}$. The "sinc" portion of the second term becomes

$$
\begin{equation*}
\frac{\sin \left[\frac{2 \pi l\left(K_{1}-1\right)}{2 K_{1}}\right]}{\sin \left(\frac{2 \pi l}{2 K_{1}}\right)}=\frac{\sin \left(\pi l-\frac{\pi l}{K_{1}}\right)}{\sin \left(\frac{\pi l}{K_{1}}\right)}=-\frac{\sin \left(\frac{\pi l}{K_{1}}-\pi l\right)}{\sin \left(\frac{\pi l}{K_{1}}\right)}=-(-1)^{l} \frac{\sin \left(\frac{\pi l}{K_{1}}\right)}{\sin \left(\frac{\pi l}{K_{1}}\right)}=(-1)^{l+1} \tag{10}
\end{equation*}
$$

In total, this gives $Q=0$ as desired for these cases.

Sampling Rate and Bandwidth Interpretation

The DFT zero-padding process begins with a sequence of length K_{1} (possibly zero-padded from a shorter length N) and produces a new sequence of length K_{2}. Suppose the original sequence $x_{1}[n]$ was obtained by sampling a continuous-time signal $x_{1}(t)$ at a sampling interval of T_{1} seconds. It then follows that the DTFT $X_{1}(\omega)$ covers a frequency range of width $F_{s 1}=1 / T_{1} \mathrm{~Hz}$. The DFT $X_{1}[k]$ samples $X_{1}(\omega)$ every $F_{s 1} / K_{1}$ Hz . But what is the effective sampling rate of $x_{2}[n]$?

There is more than one reasonable interpretation. The most common use of this technique assumes that the DFT sample spacing is held constant, so that zero-padding from K_{1} to K_{2} frequency samples increases the bandwidth represented by the DFT by the factor K_{2} / K_{1}. This in turn implies a new timedomain sampling rate of $F_{s 2}=\left(K_{2} / K_{1}\right) F_{s 1}$ and a corresponding new sampling interval of $T_{2}=\left(K_{1} / K_{2}\right) T_{1}$. The total duration of $x_{2}[n]$ in seconds is then the same as that of $x_{1}[n]$, so the result is that x_{1} has been upsampled to a higher sampling rate. This viewpoint is the interpretation commonly applied to the use of DFT zero padding.

One could just as easily assume that the sequence $x_{2}[n]$ retains the same original sampling rate of T_{1}. In this case, the total bandwidth represented in X_{2} must still be $F_{s 1} \mathrm{~Hz}$. This implies that the zero padding of the DFT has compressed the original spectral data in X_{1} into a frequency interval that is smaller by the factor $\left(K_{1} / K_{2}\right)$. The time sequence x_{2} is now longer in seconds than x_{1} by the factor $\left(K_{2} / K_{1}\right)$. Under this interpretation, the process is viewed as stretching the time base of the signal.

References

[1] M. A. Richards, "A Note on Upsampling by Integer Factors Using the DFT", technical memo, February 24, 2012. Available at www.radarsp.com.

