
Noncoherent Integration Gain Page 1 of 11 June 9, 2010; rev1 April 19, 2013 

Noncoherent Integration Gain, and its Approximation 

Mark A. Richards 

June 9, 2010 

Revised May 6, 2013 

1 Signal-to-Noise Ratio and Integration in Radar Signal 

Processing 

Signal-to-noise ratio (SNR) is a fundamental determinant of the quality of many 

radar signal processing operations. To cite some important examples [1]: 

 for a given probability of false alarm PFA, the probability of detection, PD, 

increases as SNR increases 

 measurement precision in range, angle, and Doppler frequency improves 

(standard deviation of measurement error decreases) as SNR increases 

 image contrast (dynamic range) in synthetic aperture radar (SAR) imaging 

increases as SNR increases. 

Many radar signal processing operations seek to increase SNR and thus radar 

performance by adding (“integrating”) multiple data samples together. Two major classes 

of integration are recognized: coherent and noncoherent. 

2 Coherent Integration Gain 

Coherent integration gain is the increase in SNR obtained by coherently integrating 

multiple measurements of a signal in additive noise [1]. The integration is considered 

“coherent” when it is performed on the complex data, so that both the amplitude and the 

phase of the data are utilized. Consider complex data x[n] comprised of a complex 

constant signal s[n] = Ae
j

 (independent of the index n) and additive zero complex white 

Gaussian noise w[n] of variance 2
w : 

        jx n s n w n Ae w n     (1) 

The SNR of a single sample of x, denoted 1, is 
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Consider the sum of N such samples: 
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The sum z is still in the form of the sum of a signal component jNAe   and a noise 

component that is the sum of N noise samples. The power in the signal component is 

clearly (NA)
2
. The power in the noise component is 
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where we have relied on w[n] being a white random process. The SNR of z, 
cN , is 
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This increase in SNR by a factor of N due to coherent integration of N data samples is 

called the coherent integration gain, and is denoted here as Gc: 

 1

c

c
N
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Obtaining this gain obviously depended on having the signal samples add in phase 

(sometimes called adding on a “voltage basis”) so that the signal component power 

increased by a factor of N
2
. In contrast, the power of the integrated noise increased only 

by a factor of N (a result sometimes called adding on a “power basis”). It should also be 

clear that the signal component can be generalized to be of the form Aexp(j[n]), thus 

allowing for a phase modulation, provided that the phase modulation is compensated 

during integration so that the signal components again add in phase: 
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Clearly, the phase sequence [n] must be known or estimated for compensation to be 

applied successfully. This generalization of coherent integration is the common thread 

underlying the processing gain achieved by any matched filtering technique, such as 

Doppler filtering, synthetic aperture radar (SAR) image formation, and space-time 

adaptive processing (STAP). 
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To compute the effect of coherent integration on detection performance, results for 

a single sample of signal in noise are used, with 
cN  replacing 1 [1][2]. For example, if 

an SNR of 15 dB is required to achieve a specified PD and PFA with a single data sample, 

the same PD and PFA can be achieved by collecting and coherently integrating 2 samples 

having individual SNRs of 12 dB (a reduction by a factor of 2, equivalent to 3 dB), or 10 

samples with individual SNRs of 5 dB (a reduction by a factor of 10, equivalent to 10 

dB). 

3 Noncoherent Integration Gain 

In noncoherent integration, the summation is applied to a function of the magnitude 

of the complex data sample x[n], thus discarding the phase information before 

integration. Integration is typically performed on |x[n]|, |x[n]|
2
, or log(|x[n]|). These are 

commonly referred to respectively as linear, square-law, or log detected data. Assuming 

for example a linear detector, noncoherent integration consists of forming the sum 
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       (8) 

However, it is not possible to define a signal-to-noise ratio in the noncoherent case 

because znc cannot be decomposed into the sum of distinct signal-only and noise-only 

components as was done in Eq. (3). This is because the nonlinear transformations  , 
2
 , 

and log   create cross-products of signal and noise components. Thus, it is not possible 

to directly compute an SNR after noncoherent integration, and in turn it is not possible to 

directly compute a noncoherent integration gain. 

However, a noncoherent integration gain Gnc can be defined indirectly by 

considering the single-sample SNR required to achieve a specified performance in some 

signal processing problem when noncoherently integrating multiple data samples, and 

comparing that to the SNR required to achieve the same performance when only a single 

sample is used. Denote the single-sample SNR needed to achieve a specified performance 

when N such samples are noncoherently integrated as 1,N . Now consider the detection 

curves in Figure 1, adapted from [1]. These show the PD achieved as a function of SNR 

with a linear detector and noncoherent integration for a PFA of 10
−8

. Such curves define 

an implicit noncoherent integration gain. For instance, consider the single sample SNR 

required to achieve PD = 0.8 for N = 1 and again for N = 10. From the figure, it can be 

seen that the single-sample SNR required for N = 1 is 1 = 14 dB, while for N = 10 the 

SNR required is reduced to 1,10  = 5.7 dB. The difference of 8.3 dB, a factor of about 

6.8, is the noncoherent integration gain Gnc. In general, 
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Figure 1. Illustration of effect of noncoherent integration on single-sample 

SNR required. PFA = 10
−8

. 
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It is often stated that 0.5
ncG N N  . This example shows that is not the case. 

Specifically, for this example Gnc = 6.8 = 10
0.833

. (Note that the coherent integration gain 

Gc = N
1
). When expressed in the form N


, it is the case that 0.5 <  < 1 for noncoherent 

integration gain. Consequently, noncoherent integration is not as efficient as coherent 

integration in the sense that it takes a larger value of N to achieve a given integration gain 

than is required for coherent integration. We will return to integration efficiency in 

Section 7. 

One issue in expressing Gnc in the form N

 is that we require Gnc = 1 when N = 1 for 

both coherent and noncoherent cases.  This means we want 1

 = 1, which is true for any 

value of . That is, the integration exponent is indeterminate for N = 1. The results that 

follow should generally be used only for N > 1 to avoid arithmetic inconsistencies. 

4 Computing Noncoherent Integration Gain for Detection 

Because the detectors used to obtain noncoherent data are nonlinear operations, Gnc 

is not easily calculated directly. The most straightforward way to compute Gnc in the 

context of detection is to use results for calculation of detection performance for a given 
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problem to calculate the single-sample SNR 1 required when using N = 1 sample; repeat 

for N > 1 samples to get 1,N; and then compute the ratio 11,N of Eq. (9). 

Consider the common radar case of a nonfluctuating target in complex Gaussian 

noise, sometimes called the Marcum or Swerling 0 model. For a given PFA, single-sample 

SNR 1,N, number of samples noncoherently integrated N,  and a square-law detector, PD 

is found with the pair of equations [1][2]. 

 1 [ , 1]FA
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P I N

N
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where I[·,·] is Pearson’s form of the incomplete gamma function and QM(·,·) is Marcum’s 

Q function [1]. Equation (10) is solved for the threshold T required to achieve the desired 

PFA; T is then used with N to solve Eq. (11) for the SNR 1,N that gives the desired PD. 

The same process can be used for the other Swerling models by replacing Eq. (11) with 

the appropriate equation for each fluctuation model. (Equation (10) is unchanged.) These 

solutions must generally be obtained numerically. One set of MATLAB software for 

doing so is available at [3].  

5 Approximations to Noncoherent Integration Gain for 

Detection of Nonfluctuating Targets 

Albersheim’s equation is an empirical approximation to the nonfluctuating target 

detection problem, but for a linear detector [4][5]. The single-sample SNR is computed 

according to 
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Noncoherent integration gain is easily obtained by computing the single-sample SNR 

using Albersheim’s equation with different values of N. Because the SNR required to 

achieve a given detection performance with a linear vs. a square-law detector varies by 

only about 0.2 dB over a wide range of parameters [6], Albersheim’s equation is 

generally useful for both detector types. 
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Peebles has presented the following empirical formula that gives noncoherent 

integration gain directly for the nonfluctuating target case and a square-law detector [6]: 
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Peebles states that this formula is accurate to within about 0.8 dB over a range of about 1 

to 100 for N, 0.5 to 0.999 for PD, and 10
−10

 to 10
−2

 for PFA. An approximation for the 

integration gain exponent can also be written directly from Eq. (13); it is 
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 (14) 

Note that Eq. (13) produces Gnc = 0 dB for N = 1 and any value of PD and PFA, 

which is correct. However, Eq. (14) produces a value for  that depends on PD and PFA, 

which is not correct. It can even produce  > 1. This occurs because of cancellation of 

log10N terms in the numerator and denominator in the conversion from (13) to (14); this 

cancellation obscures the indeterminacy of  for N = 1 mentioned previously. Thus, Eq. 

(14) should be used only for N > 1. 

6 Comparison of Calculations of Noncoherent Integration Gain 

Figure 2 compares Gnc for the case of PFA = 10
−8

 and PD = 0.5. 0.8, or 0.95 as 

computed using the exact results of Eqs. (10) and (11) with Eq. (9); Albersheim’s 

equation (12) with (9); and Peebles’ approximation (13). Figure 3 repeats the same 

conditions but with PFA = 10
−4

. Clearly all three methods produce generally similar 

estimates of Gnc. It can also be seen that Gnc is only a weak function of PD and PFA, since 

the curves do not vary much with either of these. 

Estimates of Gnc based on Albersheim’s or Peebles’ equations are much easier to 

deal with because they involve simple, closed-form expressions, while computation of 

Marcum’s Q function QM(·,·) requires iterative procedures that may exhibit numerical 

problems for some parameters [7]. Figure 4 shows the difference in Gnc estimated using 

Albersheim’s or Peebles’ equations vs. that computed using the exact results of Eqs. (10) 

and (11) for PFA = 10
−10

 and three values of PD. This particular case provides some of the 

larger errors for likely values of PD and PFA. The errors remain well within the ±1 dB 

range for both approximations over a wide range of PD and PFA. 
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(a) (b) (c) 

Figure 2. Noncoherent integration gain for PFA = 10
−8

 and three values of 

PD. (a) Exact result. (b) Computed using Albersheim’s equation. 

(c) Peebles’ approximation. 

 

   

(a) (b) (c) 

Figure 3. Noncoherent integration gain for PFA = 10
−4

 and three values of 

PD. (a) Exact result. (b) Computed using Albersheim’s equation. 

(c) Peebles’ approximation. 

 

7 Efficiency of Noncoherent Integration for Nonfluctuating 

Targets 

Because coherent integration would reach a factor of 10 dB for N = 10 and 20 dB 

for N = 100, it is also clear that Gnc for a nonfluctuating target is less efficient than 

coherent integration.1 That is, if Gnc is expressed in the form N

, then  < 1. (Recall that 

Gc = N, so  = 1 for coherent integration.) In the example given earlier,  = 0.833. 

 

                                                 
1 This is also true for noncoherent integration with fluctuating targets; we just don’t demonstrate it here. 
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(a) (b) 

Figure 4. Error in estimate of Gnc as compared to that calculated using 

Eqs. (10) and (11) for PFA = 10
−10

 and three values of PD. (a) Error in 

estimate using Albersheim’s Eq. (12). (b) Error using Peebles’ Eq. (13). 

 

The integration exponent  can be obtained from estimates of Gnc by the formula 
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Figure 5 illustrates the efficiency of noncoherent integration for one example, a 

nonfluctuating target with PD = 0.9 and PFA = 10
−6

. The exponent  exceeds 0.8 for small 

N, and falls to a little more than 0.7 for N = 100. However, over this range of N,  easily 

exceeds 0.5, corresponding to a N  factor. 

 

 

Figure 5. Noncoherent integration gain for a nonfluctuating target with 

PD = 0.9 and PFA = 10
−6

, computed using Albersheim’s equation. 
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In coherent integration, the integration factor is N independent of the SNR of the 

individual data samples. Figure 5 suggests that, as more samples are noncoherently 

integrated, the integration efficiency degrades. That is,  is relatively high for the first 

few samples integrated, but there are some diminishing returns as N is increased. At the 

same time, for a fixed PD and PFA, a larger value of N implies that the individual samples 

can start with a lower value of SNR, 1,N. These observations suggest that noncoherent 

integration is more efficient when the single-sample SNR is high than when it is low. 

Figure 6 plots  vs. 1,N to make this behavior explicit. Results are shown for PD = 

0.9 and three values of PFA, and for values of N ranging from 2 to the ridiculously large 

value of 10
8
. The triplets of connected round markers indicate the points on each curve 

corresponding to specific values of N. 

When the single-sample SNR is high to begin with, very few samples need be 

integrated to achieve the desired detection performance and the noncoherent integration 

efficiency is in the vicinity of 0.9. On the other hand, if the single-sample SNR is very 

low to begin with, noncoherent integration efficiency asymptotically approaches N  ( 

= 0.5). However, this occurs only for extremely and very unrealistically large numbers of 

samples integrated; the case of 1,N = −30 dB and PFA = 10
−6

 in Figure 6, which gives  ≈ 

0.57, corresponds to N ≈ 36 million!2  For N in the likely range of 2 to 100,  is in the 

range of about 0.9 to 0.7. The general appearance of these curves varies only modestly 

with PD. The primary difference is that the maximum value of  for a given PFA is 

slightly higher for high PD and slightly lower for lower PD. 

 

                                                 
2 The extreme cases should be viewed with considerable caution. They were computed using Albersheim’s 

equation, but with parameters well out of the range over which the accuracy of Albersheim’s equation is 

guaranteed. The exact equations using Marcum’s Q function were not used because it is difficult to 

evaluate for such large N [7]. The trends shown above are believed to be correct, but the accuracy of the 

precise values is uncertain for single sample SNRs less than about −2 dB. 
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Figure 6. Noncoherent integration gain vs. single-sample SNR 1,N for 

nonfluctuating target with PD = 0.9 and PFA = 10
−4

, 10
−6

, and 10
−8

, 

computed using Albersheim’s equation. 

 

8 Approximations to Noncoherent Integration Gain for 

Detection of Fluctuating Targets 

Shnidman has given useful empirical approximations for calculating single-sample 

SNR given PD, PFA, and N for fluctuating targets [8]. These equations play the same role 

for fluctuating targets as does Albersheim’s equation for nonfluctuating targets. 

Consequently, the same strategy described above with Albersheim’s equation can be 

applied using Shnidman’s equation to estimate noncoherent integration gain for 

fluctuating targets. The results can be compared with more exact calculation using the 

equations from [1] or [2] with the software from [3] to estimate the accuracy of the 

procedure based on Shnidman’s equations. 
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