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1 BACKGROUND 

The Swerling models are models of the probability density function (pdf) and time 
correlation properties of the radar backscatter from a complex target [1].  Developed in the early 
days of radar, the Swerling models apply to a finite group of pulses.  They were developed with 
the model of a rotating surveillance radar in mind.  As the radar beam sweeps past a target (a 
single scan), it collects echoes from that target in the appropriate range bin for several pulses.  
Once the beam moves past the target, no more echoes are received until the next scan, when the 
beam has swung back around to the target position again; another group of several pulses is then 
received.  Detection is assumed to be attempted using all of the pulses from a single scan.  Thus, 
the joint statistics of a group of target echo samples from contiguous pulses of a single scan are 
of interest. 

The Swerling models are formed from the four combinations of two probability density 
functions (pdf’s) for the individual echo powers and two assumptions regarding the decorrelation 
time, or independence, of pulses within a single scan according to the following table: 

 
SWERLING TARGET MODELS 

probability density 
function of power 

decorrelation 
scan-to-scan pulse-to-pulse 

exponential 1 2 
chi-square, degree 4 3 4 

 

The individual echo powers (proportional to radar cross section) are assumed to exhibit 
either an exponential pdf (Swerling 1 and 2) or a 4th-degree chi-square pdf (Swerling 3 and 4).  
The corresponding voltage distributions (square root of power) are the Rayleigh and the 4th-
degree chi distributions.  The Rayleigh voltage/exponential power pdf, which is obtained from a 
law of large numbers argument, is appropriate for a target composed of a large number of 
approximately equal-strength scatterers, with no one scatterer dominant.  It is often applied to 
large (with respect to wavelength), complex targets, especially when viewed over changing 
aspect angles. 
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The 4th-degree chi voltage/4th-degree chi-square power pdf is an approximation to the pdf 
obtained in the case of a large number of equal strength scatterers plus a single, steady dominant 
scatterer, with the power of the dominant scatterer equal to 1 2+  times the total power of all 
the smaller scatterers.1  The exact distribution for this case is the Rice or Rician distribution, 
which can model any ratio of the dominant to lesser scatterers.  However, the Swerling 
approximation is well-entrenched, partly because it is more analytically tractable. 

Note that the voltage models produce only non-negative values.  It is assumed that what is 
being modeled is the output of a linear detector, i.e. the magnitude of the real or complex video 
receiver voltage.  The power models correspond to a square-law detector. 

Concerning decorrelation, the term scan-to-scan decorrelation implies that all the echoes 
within a given scan have the same value, drawn from the appropriate pdf.  All of the pulses on 
the next scan are again equal to one another, but not to those in the previous scan.  Instead, they 
have a new, independent value drawn from the appropriate pdf.  In pulse-to-pulse decorrelation 
each individual echo power sample is a new, independent random variable drawn from the 
appropriate pdf.  Physically, decorrelation is typically assumed to be caused by changing radar-
target aspect angle from one measurement to the next.  It can also be forced through the use of 
frequency agility [1]. 

Reference is sometimes made to a “Swerling 0” or “Swerling 5” model.  This is the case of 
a single, nonfluctuating scatterer and thus does not require the generation of random variables. 

2 ALGORITHMS 

The only issue in generating Swerling random sequences is the generation of independent 
random variables having the various probability density functions required for voltage or power 
samples.  Decorrelation models are implemented by either using one random variable from the 
desired pdf for all N samples in a scan (scan-to-scan decorrelation, i.e. the Swerling 1 or 3 
models), or generating separate random variables of the desired pdf for each of the N samples 
(pulse-to-pulse decorrelation, i.e. the Swerling 2 or 4 models). 

2.1 EXPONENTIAL DISTRIBUTION 

The exponential probability density function of mean µ is given by [2] 
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1 The particular dominant/small scatterer ratio of 1 2+  is the ratio that causes the first two moments (mean and variance) of the Rice 
distribution to match the chi-square distribution. 
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The standard deviation of this exponential random variable is µ2. 

A very simple way to generate exponential-distributed random variables x from uniform 
[0,1) rv’s u is by the following transformation [3]: 

 lnx uµ= −  (2) 

Figure 1 is a histogram obtained by applying this transformation with µ = 1 to a vector of 
100,000 uniform rv’s generated in MATLAB.  Also shown is the theoretical probability density 
function.  The theoretical standard deviation for this distribution is also 1.  The sample mean and 
standard deviation were 1.0027 and 1.0019; the differences are about 0.2% in the standard 
deviation and 0.3% in the mean. 
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Figure 1.  100-bin histogram of a unit-mean exponential sample sequence generated 

in MATLAB using the native MATLAB uniform random number generator and 
Eqn. (2).  The corresponding theoretical pdf of Eqn. (1) is also shown. 

2.2 RAYLEIGH DISTRIBUTION 

The Rayleigh probability density function of mean µ is given by [2] 
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The standard deviation of this Rayleigh random variable is ( )4µ π π−  = 0.5227µ. 

A simple way to generate Rayleigh-distributed random variables x from uniform [0,1) rv’s 
u is by the following transformation [3]: 
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24 lnx uµ

π
= −  (4) 

The logarithm converts the uniform distribution to an exponential distribution; the scale factor 
adjusts the mean; and the square root converts the exponential distribution to a Rayleigh. 

Figure 2 is a histogram obtained by applying this transformation with µ = 1 to a vector of 
100,000 uniform rv’s generated in MATLAB.  Also shown is the theoretical probability density 
function.  The theoretical standard deviation for this distribution is 0.522723.  The sample mean 
and standard deviation were 1.0002 and 0.52211; the differences are about 0.1% in the standard 
deviation and 0.2% in the mean. 
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Figure 2.  100-bin histogram of a unit-mean Rayleigh sample sequence generated in 
MATLAB using the native MATLAB uniform random number generator and Eqn. (4).  

The corresponding theoretical pdf of Eqn. (3) is also shown. 
 

2.3 4TH-DEGREE CHI-SQUARE DISTRIBUTION 

The 4th-degree chi-square probability density function of mean µ is given by [2] 
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The variance σ2 of this random variable is 2 2µ . 

A simple way to generate 4th-degree chi-square random variables x is by the following 
transformation [3]: 
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 ( )1 2ln
2

x u uµ
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where u1 and u2 are independent uniform (0,1] rvs.  Notice the similarity to Eqn. (2). 

Figure 3 is a histogram of 100,000 4th-degree chi samples obtained by applying Eqn. (6) 
with µ = 1 to 200,000 uniform rv’s generated in MATLAB.  Also shown is the theoretical 
probability density function.  The theoretical standard deviation for this distribution is 0.7071.  
The sample mean and standard deviation were 1.003 and 0.7114; the differences are about 0.3% 
in the mean and about 0.6% in the standard deviation. 
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Figure 3.  100-bin histogram of a unit-mean 4th-degree chi-square sample sequence 
generated in MATLAB using the native MATLAB uniform random number generator 

and the method of Eqn. (6).  The corresponding theoretical pdf of Eqn. (5) is also 
shown. 

2.4 4TH-DEGREE CHI DISTRIBUTION 

The 4th-degree chi distribution having mean µ is given by [2] 
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where ( ) ( )2 5 2 2 1.88α ≡ ⋅Γ Γ ≈ .  The variance σ2 of this random variable is 

( ) ( )2 24µ α α− . 
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Just as a Rayleigh rv could be obtained as the square root of an exponential rv with 
appropriate scaling to get the desired mean, a simple way to generate 4th-degree chi-distributed 
random variables x from uniform [0,1) rv’s u is by the following transformation: 

 ( )
2

1 22
2 lnx u uµ
α

= −  (8) 

where u1 and u2 are independent uniform (0,1] random variables and α is as described in the 
previous paragraph.  Notice the similarity to Eqn. (4). 

Figure 4 is a histogram of 100,000 4th-degree chi samples obtained by applying Eqn. (6) 
with µ = 1 to 200,000 uniform rv’s generated in MATLAB.  Also shown is the theoretical 
probability density function.  The theoretical standard deviation for this distribution is 0.3630.  
The sample mean and standard deviation were 0.9992 and 0.3616; the differences are about 0.1% 
in the mean and about 0.4% in the standard deviation. 
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Figure 4.  100-bin histogram of a unit-mean 4th-degree chi sample sequence 

generated in MATLAB using the native MATLAB uniform random number generator 
and the method of Eqn. (8).  The corresponding theoretical pdf of Eqn. (7) is also 

shown. 
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