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1 Introduction 
Table 6.1 in the text Fundamentals of Radar Signal Processing, 2nd ed. [1], is reproduced below. It gives 
formulas for the probability of false alarm PFA and the probability of detection PD for the four standard 
Swerling target fluctuation models and the nonfluctuating model (denoted Swerling 0 or 5, as is often 
don) in additive Gaussian noise when a square law detector and N-fold noncoherent integration are 
used. χ  is the signal-to-noise ratio. The same table also appears as Table 6.1 of the first edition of the 

book. 

Table 6.1 from [1], “Probability of Detection for Swerling Model Fluctuating Targets with a Square-Law 
Detector”. 

Case PD Comments 

0 or 5 ( ) ( )
1

2( )
1

2
2 , 2 2

r
N

T N
M r

r

TQ N T e I NT
N

χχ χ
χ

−

− +
−

=

 
+  

 
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Nonfluctuating case 

1 
111 exp

1

N T
N Nχ χ

−
   −
+   +     

Approximate for 1FAP  and 
1;Nχ >  exact for N = 1 

2 1 , 1
(1 )

TI N
Nχ

 
− − 

+    
 

3 
2 2( 2)21 1 exp

1 ( / 2) 1 / 2

N NT T
N N N Nχ χ χ χ

−
 −   −

+ + −     + +      
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4 

2 1

0 0

0 2

( )! 1 (2 )
!( )! !

( )! 11 (2 )
!( )! !

N k cT lN N k
N

k l
N k cT lN

N

k l N k

e cTN cc T N c
k N k c l

e cTN cc T N c
k N k c l

− −− −

= =

− −∞

= = −

 −    > −  −     

− − < − −  

∑ ∑

∑ ∑
 

1
1 ( / 2)

c
χ

≡
+  

1 , 1FA
TP I N
N

 
= − − 

 
 in all cases 

I(·,·) is Pearson’s form of the incomplete Gamma function; Ik(·) is the modified Bessel function of the first kind 
and order k. 
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The particular forms of the detection equations in this table were obtained from the text by Meyer and 
Mayer (“M&M”) [2]. However, the versions presented in this table, while useful, are a somewhat 
inconsistent mix of exact and approximate results. The first goal of this memo is to present a more 
consistent set of exact results, and to show briefly how some approximate, simplified results are then 
derived. 

A second issue is that [2] and therefore the original table uses Pearson’s form of the incomplete gamma 
function to express some of the results. Pearson’s incomplete gamma function is defined in [2] as 

 ( ) ( )

1 1

0 0

1 1,
! 1

a b a b
b t b t

PI a b t e dt t e dt
b b

+ +
− −= =

Γ +∫ ∫   (1) 

Meyer and Mayer use only the first version because the argument b is always integer; the second 
version is a generalization for non-integer b. Despite the ( ),PI ⋅ ⋅  notation adopted here, the table above 

uses just ( ),I ⋅ ⋅  for Pearson’s form because that is the way it was presented in [1]. 

It now is more common to use an incomplete gamma function or “normalized” incomplete gamma 
function defined as [3][4] 

 ( ) ( ) ( )
1 1

0 0

1 1,
1 !

c c
d t d tI c d t e dt t e dt

d d
− − − −= =

Γ −∫ ∫   (2) 

where the second version is for an integer argument d, which will always be our case. Eqn. (2) is also the 
definition used by MATLAB™ for their gammainc function. The two versions are related by 

 ( ) ( ), 1, 1PI a b I a b b= + +   (3) 

This conversion is also noted in [5]. The second goal of this memo is to restate the tabular results in 
terms of the more modern, common, and MATLAB™-compatible normalized incomplete gamma 
function. 

2 Exact Equations for PD, in Original Pearson’s and “Modern” 
MATLAB™-Compatible Forms 

The formulas for PD in the Swerling 1 and 3 cases of the original Table 6.1 above are approximations, as 
noted in the last column. Table 1 repeats the results of the table without the approximations, and also 
identifies where each equation appears in [2]. The equations in Table 1 still use the Pearson’s form of 
the incomplete gamma function. However, the notation has been changed to denote Pearson’s form as 

( ),PI ⋅ ⋅ , as in Eqn. (1); the notation ( ),I ⋅ ⋅  will now be reserved for the more common and MATLAB™-

compatible form of Eqn. (2). 
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Table 1. Exact Probability of Detection for Swerling Model Fluctuating Targets with a Square-Law 
Detector and Pearson’s Form of the Incomplete Gamma Function. 

Case PD Comments 

0 or 5 ( ) ( )
1

2( )
1

2
2 , 2 2

r
N

T N
M r

r

TQ N T e I NT
N

χχ χ
χ

−

− +
−

=

 
+  

 
∑

 

Nonfluctuating case. 
( ),MQ ⋅ ⋅  is Marcum’s Q function. 

M&M eqn. (3-37). 

1 

( )( )

1 , 2
1

111 exp , 2
1 1 1 1

TI NP N
N T TI NPN N N Nχ χ χ

 
− − + − 

−     −
 + −   + + −      



 M&M eqn. (3-56). 

2 1 , 1
(1 )P

TI N
Nχ

 
− − 

+ 
 M&M eqn. (3-60). 

3 
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2
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/ 2
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1 / 2 / 2 1 / 2

N
N

N

T N T
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χ

χ χ χ
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+ +      
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22 ! ! 10
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1 !0

NN T T l cTT e c e T eN
NN l cl
c T llNN c e T c
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> + +

−− −=
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∑
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

 

 
 
 
M&M eqns. (3-69) and (A-85) 
 
 
 

1
1 ( / 2)

c
Nχ

≡
+
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− −∞
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 −    > −  −     

− − < − −  

∑ ∑

∑ ∑
 

1
1 ( / 2)

c
χ

≡
+

 

M&M eqns. (A-107) and (A-111) 

1 , 1FA P
TP I N
N

 
= − − 

 
 in all cases M&M eqn. (2-17) 

IP(·,·) is Pearson’s form of the incomplete gamma function; Ik(·) is the modified Bessel function of the first kind 
and order k. 

 

In order to more easily translate these expressions into computer code, Table 2 restates Table 1 in terms 

of the MATLAB™-compatible normalized incomplete gamma function ( ),I ⋅ ⋅ . Note that this affects only 

the Swerling 1 and 2 expressions, and the PFA expression. In addition to retaining which M&M equation 
is the source of each case, we also note where the same expressions can be found in Barton [5] for the 
Swerling 1 and 2 cases. 
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Table 2. Exact Probability of Detection for Swerling Model Fluctuating Targets with a Square-Law 
Detector and the MATLAB™-Compatible Form of the Incomplete Gamma Function. 

Case PD Comments 

0 or 5 ( ) ( )
1

2( )
1

2
2 , 2 2

r
N

T N
M r

r

TQ N T e I NT
N

χχ χ
χ

−

− +
−

=

 
+  

 
∑

 

Nonfluctuating case. 
( ),MQ ⋅ ⋅  is Marcum’s Q function. 

M&M eqn. (3-37) 

1 

( )

( )( )

1 , 1
111 exp , 1

1 1 1

I T N
N T TI N

N N Nχ χ χ

− − +

−     −
+ −    + +      



 Equivalent to M&M eqn. (3-56) 
Barton eqn. (4.28) 

2 1 ,
(1 )

TI N
χ

 
−  + 

 Equivalent to M&M eqn. (3-60). 
Barton eqn. (4.35) 

3 

( )

( ) ( )

2
11 or 2 : 1

/ 2

21 exp
1 / 2 / 2 1 / 2

N
N

N

T N T
N N N

χ

χ χ χ

− 
= +  

 
   − −
+ −   

+ +      



 

 

( ) ( )

( )
( )

( ) ( )

21
2 :

22 ! ! 10
122 1

1 1
1 !0

NN T T l cTT e c e T eN
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c T llNN c e T c

cT
c ll

−− − − −
> + +

−− −=

− − − − − − + −   −   =  

∑

∑



 

 
 
 
M&M eqns. (3-69) and (A-85) 
 
 
 

1
1 ( / 2)

c
Nχ

≡
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2 1

0 0

0 2

( )! 1 (2 )
!( )! !
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N k cT lN N k
N

k l
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N

k l N k

e cTN cc T N c
k N k c l

e cTN cc T N c
k N k c l

− −− −
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− −∞

= = −

 −    > −  −     

− − < − −  

∑ ∑

∑ ∑
 

1
1 ( / 2)

c
χ

≡
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M&M eqns. (A-107) and (A-111) 

( )1 ,FAP I T N= −  in all cases Equivalent to M&M eqn. (2-17) 
Barton eqn. (4.4) 

I(·,·) is the normalized incomplete gamma function; Ik(·) is the modified Bessel function of the first kind and 
order k. 

 

3 Simplified Equations for PD for Some Swerling Cases 
Properties of the normalized incomplete gamma function can be used to simplify the expressions for PD 
in a few cases, producing what are certainly better-known and more calculator-friendly expressions. 
These expressions are exact for some Swerling cases and values of N, and approximate for others, as 
noted in the discussion. 

First, note the following properties of I(·,·) [4]: 



M. A. Richards, “Exact and Approximate Detection Probability Formulas” Sep. 26, 2018 

 

5 | P a g e  
 

• For any c, ( ),0 1I c =  

• For any c, ( ),1 1 cI c e−= −  

• For any c, ( ) ( ),2 1 1 cI c c e−= − +  

• For d > 0, ( )lim , 1
c

I c d
→∞

=  

3.1 Swerling 1 Case 
When N = 1, applying the property ( ),0 1I c =  immediately reduces the Swerling 1 expression in Table 2 

to the much simpler but still exact expression 

 exp
1D

TP
χ

 −
=  + 

      [Swerling 1, N = 1; M&M Eqn. (3-52) ] (4) 

Also in the N = 1 case, the property ( ) ( ),1 1 expI c c= − −  can be applied to the expression for PFA to get 

 T
FAP e−=       [N = 1 ] (5) 

Eliminating T from eqns. (4) and (5) gives, for a single sample of a Swerling 1 target in noise, 

 ( )1 1
D FAP P χ+=       [Swerling 1, N = 1] (6) 

Now assume that 1FAP   and 2Nχ > . (The quantity Nχ  can be thought of (very) crudely as the 

integrated signal-to-noise ratio at the input to the square law detector.)  DiFranco and Rubin argue on p. 
390 of [6] that both of these conditions must hold true if we are going to have any chance of detecting a 
target while maintaining a small PFA. They further argue, apparently relying on the property 

( )lim , 1
c

I c d
→∞

= , that the two incomplete gamma functions in the Swerling 1 exact result are both 

approximately equal to one. Under these conditions, the exact expression in the table then reduces to 

 
111 exp

1

N

D
TP

N Nχ χ

−
   −

≈ +   +   
        [Swerling 1; 1FAP   and 2Nχ > ; Barton eqn. (4.30) ] (7) 

This result is exact (and matches Eqn. (4) ) for N = 1. 

3.2 Swerling 3 Case 
Using the same arguments as in the Swerling 1 case, DiFranco and Rubin show on p. 421 of [6] that the 
exact expression given in Table 2 for the Swerling 3 case with N = 1 or 2 is a valid approximation for 

larger N as well, provided again that 1FAP   and 2Nχ >  and using ( )lim , 1
c

I c d
→∞

= . Therefore, 
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( ) ( ) ( )

2
1 21 1 exp

/ 2 1 / 2 / 2 1 / 2

N

D
T N TP

N N N Nχ χ χ χ

−
     − −

≈ + + −       + +        
 (8) 

[Swerling 3; 1FAP   and 2Nχ > ; M&M Eqn. (3-69), Barton eqn. (4.38) ] 

Again, this expression is exact for N = 1 and N = 2.  

4 Relationships Between Certain Swerling Cases 

4.1 Fluctuation Models Are Moot When N = 1 
The effect of noncoherent integration is moot when N = 1, i.e. there are not multiple samples to 
integrate. Consequently, the Swerling 1 and 2 cases, which share the same exponential target 
probability density function (PDF), should produce identical results in the N = 1 case. Similarly, the 
Swerling 3 and 4 cases, which share a chi-square target PDF, should be identical when N = 1. 

The equivalence of Swerling 1 and 2 is easily shown. It was seen in Eqn. (4) that ( )exp 1DP T χ= − +    

for N = 1 in the Swerling 1 case. Using ( ),1 1 cI c e−= −  shows that the Swerling 2 result is identical, as 

expected. The equivalence of the Swerling 1 and 2 cases when N = 1 also means that Eqn. (6) applies to 
the Swerling 2 case as well. 

Concerning the equivalence of Swerling 3 and 4 models when N = 1, it is trivial to write down the 
expression for the Swerling 3 case, but this cannot be readily related to the Swerling 4 expressions in 
Table 2 with N = 1. However, it easy to see that the characteristic functions for both cases, which are 
given in M&M as Eqns. (3-63) (Swerling 3) and (3-71) (Swerling 4) are identical for N = 1, so the resulting 
PDFs and then detection probabilities must also be equal. The reader is referred to [2] for the detailed 
expressions. 

4.2 Swerling 2 = Swerling 3 When N = 2 
In a previous technical memorandum [7] it was shown using characteristic functions that the receiver 
operating characteristic (ROC) curves (i.e., PD for a given PFA and signal-to-noise ratio χ ) are identical 

for the Swerling 2 and 3 cases when N = 2. This is also confirmed by the exact equations in Table 2. 

Applying the property ( ) ( ),2 1 1 cI c c e−= − +  to the Swerling 2 expression with N = 2 reduces it to 

( )( ) ( )1 1 exp 1DP T Tχ χ= + + − +   . Setting N = 2 in the first expression for the Swerling 3 case 

produces the identical result. 
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