# Exact and Approximate Detection Probability Formulas in Fundamentals of Radar Signal Processing 

## Mark A. Richards

September 2018

## 1 Introduction

Table 6.1 in the text Fundamentals of Radar Signal Processing, 2nd ed. [1], is reproduced below. It gives formulas for the probability of false alarm $P_{F A}$ and the probability of detection $P_{D}$ for the four standard Swerling target fluctuation models and the nonfluctuating model (denoted Swerling 0 or 5 , as is often don) in additive Gaussian noise when a square law detector and $N$-fold noncoherent integration are used. $\bar{\chi}$ is the signal-to-noise ratio. The same table also appears as Table 6.1 of the first edition of the book.

Table 6.1 from [1], "Probability of Detection for Swerling Model Fluctuating Targets with a Square-Law Detector".

| Case | $P_{D}$ | Comments |
| :---: | :---: | :---: |
| 0 or 5 | $Q_{M}(\sqrt{2 N \bar{\chi}}, \sqrt{2 T})+e^{-(T+N \bar{\chi})} \sum_{r=2}^{N}\left(\frac{T}{N \bar{\chi}}\right)^{\frac{r-1}{2}} I_{r-1}(2 \sqrt{N T \bar{\chi}})$ | Nonfluctuating case |
| 1 | $\left(1+\frac{1}{N \bar{\chi}}\right)^{N-1} \exp \left[\frac{-T}{1+N \bar{\chi}}\right]$ | Approximate for $P_{F A} \ll 1$ and $N \bar{\chi}>1$; exact for $N=1$ |
| 2 | $1-I\left[\frac{T}{(1+\bar{\chi}) \sqrt{N}}, N-1\right]$ |  |
| 3 | $\left(1+\frac{2}{N \bar{\chi}}\right)^{N-2}\left[1+\frac{T}{1+(N \bar{\chi} / 2)}-\frac{2(N-2)}{N \bar{\chi}}\right] \exp \left[\frac{-T}{1+N \bar{\chi} / 2}\right]$ | Approximate for $P_{F A} \ll 1$ and $N \bar{\chi} / 2>1$; exact for $N=1$ or 2 |
| 4 | $\begin{aligned} & c^{N} \sum_{k=0}^{N} \frac{N!}{k!(N-k)!}\left(\frac{1-c}{c}\right)^{N-k}\left\{\sum_{l=0}^{2 N-1-k} \frac{e^{-c T}(c T)^{l}}{l!}\right\} \quad T>N(2-c) \\ & 1-c^{N} \sum_{k=0}^{N} \frac{N!}{k!(N-k)!}\left(\frac{1-c}{c}\right)^{N-k} \sum_{l=2 N-k}^{\infty} \frac{e^{-c T}(c T)^{l}}{l!} \quad T<N(2-c) \end{aligned}$ | $c \equiv \frac{1}{1+(\bar{\chi} / 2)}$ |
| $P_{F A}=1-I\left(\frac{T}{\sqrt{N}}, N-1\right)$ in all cases |  |  |

$I(\cdot, \cdot)$ is Pearson's form of the incomplete Gamma function; $I_{k}(\cdot)$ is the modified Bessel function of the first kind and order $k$.

The particular forms of the detection equations in this table were obtained from the text by Meyer and Mayer ("M\&M") [2]. However, the versions presented in this table, while useful, are a somewhat inconsistent mix of exact and approximate results. The first goal of this memo is to present a more consistent set of exact results, and to show briefly how some approximate, simplified results are then derived.

A second issue is that [2] and therefore the original table uses Pearson's form of the incomplete gamma function to express some of the results. Pearson's incomplete gamma function is defined in [2] as

$$
\begin{equation*}
I_{P}(a, b)=\frac{1}{b!} \int_{0}^{a \sqrt{b+1}} t^{b} e^{-t} d t=\frac{1}{\Gamma(b+1)} \int_{0}^{a \sqrt{b+1}} t^{b} e^{-t} d t \tag{1}
\end{equation*}
$$

Meyer and Mayer use only the first version because the argument $b$ is always integer; the second version is a generalization for non-integer $b$. Despite the $I_{P}(\cdot, \cdot)$ notation adopted here, the table above uses just $I(, \cdot)$ for Pearson's form because that is the way it was presented in [1].

It now is more common to use an incomplete gamma function or "normalized" incomplete gamma function defined as [3][4]

$$
\begin{equation*}
I(c, d)=\frac{1}{\Gamma(d)} \int_{0}^{c} t^{d-1} e^{-t} d t=\frac{1}{(d-1)!} \int_{0}^{c} t^{d-1} e^{-t} d t \tag{2}
\end{equation*}
$$

where the second version is for an integer argument $d$, which will always be our case. Eqn. (2) is also the definition used by MATLAB ${ }^{\text {TM }}$ for their gammainc function. The two versions are related by

$$
\begin{equation*}
I_{P}(a, b)=I(a \sqrt{b+1}, b+1) \tag{3}
\end{equation*}
$$

This conversion is also noted in [5]. The second goal of this memo is to restate the tabular results in terms of the more modern, common, and MATLAB ${ }^{\text {TM }}$-compatible normalized incomplete gamma function.

## 2 Exact Equations for $P_{D}$, in Original Pearson's and "Modern" MATLAB ${ }^{\text {TM }}$-Compatible Forms

The formulas for $P_{D}$ in the Swerling 1 and 3 cases of the original Table 6.1 above are approximations, as noted in the last column. Table 1 repeats the results of the table without the approximations, and also identifies where each equation appears in [2]. The equations in Table 1 still use the Pearson's form of the incomplete gamma function. However, the notation has been changed to denote Pearson's form as $I_{P}(\cdot, \cdot)$, as in Eqn. (1); the notation $I(\cdot, \cdot)$ will now be reserved for the more common and MATLAB ${ }^{\text {TM }}$ compatible form of Eqn. (2).

Table 1. Exact Probability of Detection for Swerling Model Fluctuating Targets with a Square-Law Detector and Pearson's Form of the Incomplete Gamma Function.

| Case | $P_{D}$ | Comments |
| :---: | :---: | :---: |
| 0 or 5 | $Q_{M}(\sqrt{2 N \bar{\chi}}, \sqrt{2 T})+e^{-(T+N \bar{\chi})} \sum_{r=2}^{N}\left(\frac{T}{N \bar{\chi}}\right)^{\frac{r-1}{2}} I_{r-1}(2 \sqrt{N T \bar{\chi}})$ | Nonfluctuating case. <br> $Q_{M}(\cdot, \cdot)$ is Marcum's $Q$ function. <br> M\&M eqn. (3-37). |
| 1 | $\begin{aligned} & 1-I_{P}\left[\frac{T}{\sqrt{N-1}}, N-2\right]+\ldots \\ & \quad\left(1+\frac{1}{N \bar{\chi}}\right)^{N-1} \exp \left[\frac{-T}{1+N \bar{\chi}}\right] I_{P}\left[\frac{T}{(1+(1 / N \bar{\chi})) \sqrt{N-1}}, N-2\right] \end{aligned}$ | M\&M eqn. (3-56). |
| 2 | $1-I_{P}\left[\frac{T}{(1+\bar{\chi}) \sqrt{N}}, N-1\right]$ | M\&M eqn. (3-60). |
| 3 | $\begin{aligned} & N=1 \text { or } 2:\left(1+\frac{1}{(N \bar{\chi} / 2)}\right)^{N-2} \cdot \ldots \\ & {\left[1+\frac{T}{1+(N \bar{\chi} / 2)}-\frac{N-2}{N \bar{\chi} / 2}\right] \exp \left[\frac{-T}{1+(N \bar{\chi} / 2)}\right] } \\ & N>2: \frac{T^{N-1} e^{-T} c}{(N-2)!}+\sum_{l=0}^{N-2} \frac{e^{-T} T^{l}}{l!}+\frac{e^{-c T}}{(1-c)^{N-2}} \cdot \ldots \\ & {\left[1-\frac{(N-2) c}{(1-c)}+c T\right]\left[1-\sum_{l=0}^{N-2} \frac{e^{-(1-c) T} T^{l}(1-c)^{l}}{l!}\right] } \end{aligned}$ | M\&M eqns. (3-69) and (A-85) $c \equiv \frac{1}{1+(N \bar{\chi} / 2)}$ |
| 4 | $\begin{array}{ll} c^{N} \sum_{k=0}^{N} \frac{N!}{k!(N-k)!}\left(\frac{1-c}{c}\right)^{N-k}\left\{\sum_{l=0}^{2 N-1-k} \frac{e^{-c T}(c T)^{l}}{l!}\right\}, & T>N(2-c) \\ 1-c^{N} \sum_{k=0}^{N} \frac{N!}{k!(N-k)!}\left(\frac{1-c}{c}\right)^{N-k} \sum_{l=2 N-k}^{\infty} \frac{e^{-c T}(c T)^{l}}{l!}, \quad T<N(2-c) \end{array}$ | $c \equiv \frac{1}{1+(\bar{\chi} / 2)}$ <br> $\mathrm{M} \& \mathrm{M}$ eqns. (A-107) and (A-111) |
| $P_{F A}$ | $I_{P}\left(\frac{T}{\sqrt{N}}, N-1\right)$ in all cases | M\&M eqn. (2-17) |

$I_{P}(\cdot, \cdot)$ is Pearson's form of the incomplete gamma function; $I_{k}(\cdot)$ is the modified Bessel function of the first kind and order $k$.

In order to more easily translate these expressions into computer code, Table 2 restates Table 1 in terms of the MATLAB ${ }^{\text {TM }}$-compatible normalized incomplete gamma function $I(\cdot, \cdot)$. Note that this affects only the Swerling 1 and 2 expressions, and the $P_{F A}$ expression. In addition to retaining which M\&M equation is the source of each case, we also note where the same expressions can be found in Barton [5] for the Swerling 1 and 2 cases.

Table 2. Exact Probability of Detection for Swerling Model Fluctuating Targets with a Square-Law Detector and the MATLAB ${ }^{\text {TM }}$-Compatible Form of the Incomplete Gamma Function.

| Case | $P_{D}$ | Comments |
| :---: | :---: | :---: |
| 0 or 5 | $Q_{M}(\sqrt{2 N \bar{\chi}}, \sqrt{2 T})+e^{-(T+N \bar{\chi})} \sum_{r=2}^{N}\left(\frac{T}{N \bar{\chi}}\right)^{\frac{r-1}{2}} I_{r-1}(2 \sqrt{N T \bar{\chi}})$ | Nonfluctuating case. <br> $Q_{M}(\cdot, \cdot)$ is Marcum's $Q$ function. <br> M\&M eqn. (3-37) |
| 1 | $\begin{aligned} & 1-I(T, N-1)+\ldots \\ & \qquad\left(1+\frac{1}{N \bar{\chi}}\right)^{N-1} \exp \left[\frac{-T}{1+N \bar{\chi}}\right] I\left[\frac{T}{(1+(1 / N \bar{\chi}))}, N-1\right] \end{aligned}$ | Equivalent to M\&M eqn. (3-56) Barton eqn. (4.28) |
| 2 | $1-I\left[\frac{T}{(1+\bar{\chi})}, N\right]$ | Equivalent to M\&M eqn. (3-60). Barton eqn. (4.35) |
| 3 | $\begin{aligned} & N=1 \text { or } 2:\left(1+\frac{1}{(N \bar{\chi} / 2)}\right)^{N-2} \cdot \ldots \\ & \\ & {\left[1+\frac{T}{1+(N \bar{\chi} / 2)}-\frac{N-2}{N \bar{\chi} / 2}\right] \exp \left[\frac{-T}{1+(N \bar{\chi} / 2)}\right]} \\ & N>2: \quad \frac{T^{N-1} e^{-T} c}{(N-2)!}+\sum_{l=0}^{N-2} \frac{e^{-T} T^{l}}{l!}+\frac{e^{-c T}}{(1-c)^{N-2}} \cdot \cdots \\ & \\ & {\left[1-\frac{(N-2) c}{(1-c)}+c T\right]\left[1-\sum_{l=0}^{N-2} \frac{e^{-(1-c) T} T^{l}(1-c)^{l}}{l!}\right]} \end{aligned}$ | $M \& M$ eqns. (3-69) and (A-85) $c \equiv \frac{1}{1+(N \bar{\chi} / 2)}$ |
| 4 | $\begin{aligned} & c^{N} \sum_{k=0}^{N} \frac{N!}{k!(N-k)!}\left(\frac{1-c}{c}\right)^{N-k}\left\{\sum_{l=0}^{2 N-1-k} \frac{e^{-c T}(c T)^{l}}{l!}\right\} \quad T>N(2-c) \\ & 1-c^{N} \sum_{k=0}^{N} \frac{N!}{k!(N-k)!}\left(\frac{1-c}{c}\right)^{N-k} \sum_{l=2 N-k}^{\infty} \frac{e^{-c T}(c T)^{l}}{l!} \quad T<N(2-c) \end{aligned}$ | $c \equiv \frac{1}{1+(\bar{\chi} / 2)}$ <br> $\mathrm{M} \& \mathrm{M}$ eqns. ( $\mathrm{A}-107$ ) and ( $\mathrm{A}-111$ ) |
| $P_{F A}=1-I(T, N)$ in all cases |  | Equivalent to M\&M eqn. (2-17) <br> Barton eqn. (4.4) |
| $I(\cdot, \cdot)$ is the normalized incomplete gamma function; $I_{k}(\cdot)$ is the modified Bessel function of the first kind and order $k$. |  |  |

## 3 Simplified Equations for $\boldsymbol{P}_{\boldsymbol{D}}$ for Some Swerling Cases

Properties of the normalized incomplete gamma function can be used to simplify the expressions for $P_{D}$ in a few cases, producing what are certainly better-known and more calculator-friendly expressions. These expressions are exact for some Swerling cases and values of $N$, and approximate for others, as noted in the discussion.

First, note the following properties of $I(\cdot, \cdot)$ [4]:

- For any $c, I(c, 0)=1$
- For any $c, I(c, 1)=1-e^{-c}$
- For any $c, I(c, 2)=1-(1+c) e^{-c}$
- For $d>0, \lim _{c \rightarrow \infty} I(c, d)=1$


### 3.1 Swerling 1 Case

When $N=1$, applying the property $I(c, 0)=1$ immediately reduces the Swerling 1 expression in Table 2 to the much simpler but still exact expression

$$
\begin{equation*}
P_{D}=\exp \left[\frac{-T}{1+\bar{\chi}}\right] \quad[\text { Swerling 1, } N=1 \text {; M\&M Eqn. (3-52) ] } \tag{4}
\end{equation*}
$$

Also in the $N=1$ case, the property $I(c, 1)=1-\exp (-c)$ can be applied to the expression for $P_{F A}$ to get

$$
\begin{equation*}
P_{F A}=e^{-T} \quad[N=1] \tag{5}
\end{equation*}
$$

Eliminating $T$ from eqns. (4) and (5) gives, for a single sample of a Swerling 1 target in noise,

$$
\begin{equation*}
P_{D}=P_{F A}^{1 /(1+\bar{\chi})} \quad[\text { Swerling 1, } N=1] \tag{6}
\end{equation*}
$$

Now assume that $P_{F A} \ll 1$ and $N \bar{\chi}>2$. (The quantity $N \bar{\chi}$ can be thought of (very) crudely as the integrated signal-to-noise ratio at the input to the square law detector.) DiFranco and Rubin argue on $p$. 390 of [6] that both of these conditions must hold true if we are going to have any chance of detecting a target while maintaining a small $P_{F A}$. They further argue, apparently relying on the property $\lim _{c \rightarrow \infty} I(c, d)=1$, that the two incomplete gamma functions in the Swerling 1 exact result are both approximately equal to one. Under these conditions, the exact expression in the table then reduces to

$$
\begin{equation*}
P_{D} \approx\left(1+\frac{1}{N \bar{\chi}}\right)^{N-1} \exp \left[\frac{-T}{1+N \bar{\chi}}\right] \quad\left[\text { Swerling } 1 ; P_{F A} \ll 1 \text { and } N \bar{\chi}>2\right. \text {; Barton eqn. (4.30) ] } \tag{7}
\end{equation*}
$$

This result is exact (and matches Eqn. (4)) for $N=1$.

### 3.2 Swerling 3 Case

Using the same arguments as in the Swerling 1 case, DiFranco and Rubin show on p. 421 of [6] that the exact expression given in Table 2 for the Swerling 3 case with $N=1$ or 2 is a valid approximation for larger $N$ as well, provided again that $P_{F A} \ll 1$ and $N \bar{\chi}>2$ and using $\lim _{c \rightarrow \infty} I(c, d)=1$. Therefore,

$$
\begin{equation*}
P_{D} \approx\left(1+\frac{1}{(N \bar{\chi} / 2)}\right)^{N-2}\left[1+\frac{T}{1+(N \bar{\chi} / 2)}-\frac{N-2}{N \bar{\chi} / 2}\right] \exp \left[\frac{-T}{1+(N \bar{\chi} / 2)}\right] \tag{8}
\end{equation*}
$$

[Swerling 3; $P_{F A} \ll 1$ and $N \bar{\chi}>2$; M\&M Eqn. (3-69), Barton eqn. (4.38)]
Again, this expression is exact for $N=1$ and $N=2$.

## 4 Relationships Between Certain Swerling Cases

### 4.1 Fluctuation Models Are Moot When $N=1$

The effect of noncoherent integration is moot when $N=1$, i.e. there are not multiple samples to integrate. Consequently, the Swerling 1 and 2 cases, which share the same exponential target probability density function (PDF), should produce identical results in the $N=1$ case. Similarly, the Swerling 3 and 4 cases, which share a chi-square target PDF, should be identical when $N=1$.

The equivalence of Swerling 1 and 2 is easily shown. It was seen in Eqn. (4) that $P_{D}=\exp [-T /(1+\bar{\chi})]$ for $N=1$ in the Swerling 1 case. Using $I(c, 1)=1-e^{-c}$ shows that the Swerling 2 result is identical, as expected. The equivalence of the Swerling 1 and 2 cases when $N=1$ also means that Eqn. (6) applies to the Swerling 2 case as well.

Concerning the equivalence of Swerling 3 and 4 models when $N=1$, it is trivial to write down the expression for the Swerling 3 case, but this cannot be readily related to the Swerling 4 expressions in Table 2 with $N=1$. However, it easy to see that the characteristic functions for both cases, which are given in M\&M as Eqns. (3-63) (Swerling 3) and (3-71) (Swerling 4) are identical for $N=1$, so the resulting PDFs and then detection probabilities must also be equal. The reader is referred to [2] for the detailed expressions.

### 4.2 Swerling 2 = Swerling 3 When $N=2$

In a previous technical memorandum [7] it was shown using characteristic functions that the receiver operating characteristic (ROC) curves (i.e., $P_{D}$ for a given $P_{F A}$ and signal-to-noise ratio $\bar{\chi}$ ) are identical for the Swerling 2 and 3 cases when $N=2$. This is also confirmed by the exact equations in Table 2. Applying the property $I(c, 2)=1-(1+c) e^{-c}$ to the Swerling 2 expression with $N=2$ reduces it to $P_{D}=(1+T /(1+\bar{\chi})) \exp [-T /(1+\bar{\chi})]$. Setting $N=2$ in the first expression for the Swerling 3 case produces the identical result.

## 5 References

[1] M. A. Richards, Fundamentals of Radar Signal Processing, second edition. McGraw-Hill, 2014.
[2] D. P. Meyer and H. A. Mayer, Radar Target Detection: Handbook of Theory and Practice. Academic Press, 1973.
[3] Section 6.5 in M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions. National Bureau of Standards, Applied Mathematics Series, vol. 55.
[4] Section 8.2 in NIST Handbook of Mathematical Functions, Olver et al, eds. Cambridge University Press, 2010.
[5] D. K. Barton, Radar Equations for Modern Radar. Artech House, 2013.
[6] J. V. DiFranco and W. L. Rubin, Radar Detection. SciTech Publishing, 2004.
[7] M. A. Richards, "Swerling 2 = Swerling 3 When $N=2$ ", technical memorandum, July 2014. Available at http://www.radarsp.com.

