
1 | P a g e

A Note on Upsampling by Integer Factors Using the DFT

Mark Richards
February 24, 2012

Let x[n] be a sequence of length N with discrete-time Fourier transform (DTFT) X(). Let xD[n] be a

decimated sequence such that xD[n] = x[D∙n] for all n with D a positive integer. The nonzero support of

xD[n] will be from n = 0 to ND−1, where ND satisfies

1 1 1

1 1D D

N N N D
N N

D D D

        
          

     
 (1)

Let X[k] be the K-point discrete Fourier transform (DFT) of x[n], K ≥ N, and XD[k] be the KD-point DFT of

xD[n] where KD = K/D. It will always be true that KD ≥ ND when K ≥ N.

Our goal is to go the other way, i.e. given xD and XD, show how to obtain x by constructing an

appropriate X.

Oppenheim and Schafer, 3rd ed, Section 4.6.1 derive the effect on the DTFTs of “decimating” a sequence

x by an integer factor D to obtain xd. The main result is their Eqn. (4.77), which in our notation is1

  
1

0

1 2D

D

i

i
X X

D D

 






 
  

 
 (2)

We need a relationship for DFTs, not DTFTs. One way to define the DFT is as a sampled DTFT:

     2 , 0, , 1
k

K

X k X k K





   (3)

Consider the KD-point DFT of xD. Sampling the DTFT of (2) gives us

 

1 1

0 0

2
, 0, 1

1 2 2 1 2 2

D D D
D

D D

Di i

k
X k X k K

K

k i k i
X X

D K D D D K D



    

 

 
   

 

   
      

  
 

 (4)

Using KD = K/D gives

      
1 1

0 0

1 2 1
, 0, 1

D D

D D D D

i i

X k X k iK X k iK k K
D K D

 

 

 
          

 
  (5)

We now have a relation between the KD-point DFT of xd and the K-point DFT of x.

1
 You can distinguish DFTs and DTFTs in this note based on whether the argument is in parentheses (DTFT) or

square brackets [DFT].

2 | P a g e

We can accomplish the upsampling, that is, we can get from xD to x, if we can get from XD to X. So, given

xD, we take a KD-point DFT (KD ≥ ND) to get XD. We then need to form a K-point DFT XD, K = D∙KD, such

that Eqn. (5) holds. We can do this by placing the positive and negative frequency halves of XD at the

positive and negative frequency ends of X and filling the middle of X with zeros. If we do this correctly

and then do the IDFT of X, we will obtain x of length K such that xD[n] = x[D∙n] and the other samples of

x are filled in by sinc interpolation.

To be more precise about “filling in the middle”, let’s write Eqn. (5) out more explicitly:

           
1

2 1 , 0, 1D D D D DX k X k X k K X k K X k D K k K
D

              (6)

A K-point DFT is periodic in its index k with period K. We can use this to rewrite the right-hand side of

Eqn. (6) to avoid negative indices:

         
1

1 , 0, 1D D D DX k X k X k K K X k K D K k K
D

              (7)

Now we can make more specific assignments of values to X[k] that, when aliased according to Eqn. (7),

will produce the correct values in XD[k]. The answer depends on whether KD is even or odd.

If KD is odd: This means that there is no sample of XD that corresponds to half the Nyquist sampling

frequency; there is a DC sample, and then all of the others can be paired in equal-magnitude positive

and negative frequencies. In this case, make the following assignment:

     

     

 

, 0,1, , 1 2

, 1 2, , 1

0, otherwise

D D

D D D D

X k D X k k K

X k K K D X k k K K

X k

   

      



 (8)

If KD is even: This means that there is a sample of XD that corresponds to half the Nyquist sampling

frequency and it has to be “split” in some fashion. In this case, make the following assignment:

   
   
   
   
 

, 0,1, , 2 1

2 2 2,

2 2 2,

, 2 1, , 1

0, otherwise

D D

D D D

D D D

D D D D

X k D X k k K

X K D X K

X K K D X K

X k K K D X k k K K

X k

   

 

  

      



 (9)

The particular assignment given is not unique. As one example, in the even-KD case we could choose not

to “split” XD[KD/2] but instead to assign it to X[KD/2] in its entirety, and set X[K−KD/2] to zero. When X

is decimated to get XD the result will be the same as with the assignment in Eqn. (9). However, Eqn. (9)

has the following properties that are consistent with a typical bandlimited signal processing viewpoint:

3 | P a g e

1. The constructed spectrum X is bandlimited with compact support, i.e. all the energy is

concentrated around zero frequency and the center of the spectrum is empty; and

2. If xD is real-valued so that XD exhibits the appropriate DFT conjugate symmetry, namely

   D DX k X k then X will maintain that symmetry,    X k X k , and therefore x will also

be real-valued.

The following pages include a short MATLAB script that can be used to demonstrate these relations.

It is important to keep in mind what this method claims and what it doesn't claim. This algorithm is

designed to start with a sequence xD and then create a sequence x upsampled by an integer factor D.

The sequence x is designed such that, when you decimate it by the same factor D, you get the original

spectrum XD back again, which means you get the original sequence xD back again. However, this is only

guaranteed on the original sequence's region of support. If the original DFT is bigger than the original

data, KD > ND, then after you upsample the original DFT and invert the expanded DFT, you'll have a

sequence that is K points long in time instead of N. While it will match the original x1 for N = 0:N−1, the

behavior for n = N:K−1 has not been constrained. In practice, this region will not be zero, but instead

will exhibit the asinc interpolation “tails” from the ending portion of the original data sequence.

This behavior can be seen by letting KD > ND and turning off the window in the attached MATLAB

demonstration code by commenting it out (line 19). In the plot of the IFFT of the larger spectrum, i.e.

the final upsampled data, we get some funky behavior away from the original regions of support. This

upsampled domain is an asinc interpolation of the original data; the big discontinuity in my data at n = 0

causes that ringing at the other end. If you redefine the test sequence to be smoother at the beginning

(e.g., uncomment the line with the Tukey window in the code), it looks much better.

4 | P a g e

% dft_upsample.m
%
% toy example of using DFTs to upsample data, with careful (I hope)
% attention to the end points of everything
clear all
close all

ND = input('Enter sequence length ND: ');
KD = input(['Enter DFT size KD (KD >= ',num2str(ND),'): ']);
D = input('Enter upsampling factor (integer): ');

% create some data xd and its DFT Xd. I'll do a decaying, damped sinusoid.
xd = zeros(ND,1);
nd = (0:ND-1)';
f0 = 0.1; % oscillation frequency in cycles per sample
alpha = 0.04; % decay rate for amplitude
xd = exp((1i*2*pi*f0 - alpha)*nd);
% optional window to guarantee no discontinuity at the edges
xd = xd.*tukeywin(length(xd),0.1);
XD = fft(xd,KD);
kd = (0:KD-1)';

subplot(4,2,1)
plot(nd,real(xd)); grid; axis('tight')
subplot(4,2,2)
plot(kd,abs(XD)); grid; axis('tight')
shg

% Now let's build the bigger FFT according to my tech note

K = D*KD;
X = zeros(K,1);
k = (0:K-1)';

if mod(KD,2)==0
 % KD is even. Add one to all indices in tech note for MATLAB indexing
 X(1:(KD/2)) = XD(1:KD/2);
 X(KD/2+1) = XD(KD/2+1)/2;
 X(K-KD/2+1) = XD(KD/2+1)/2;
 X((KD/2+2:KD)+K-KD) = XD(KD/2+2:KD);
 X = D*X;
else
 % KD is odd
 X(1:(KD-1)/2+1) = XD(1:(KD-1)/2+1);
 X(((KD+1)/2+1:KD)+K-KD) = XD((KD+1)/2+1:KD);
 X = D*X;
end

% OK, let's see what we've got.
x = ifft(X);

subplot(4,2,3)
plot(k,real(x)); grid; axis('tight')
subplot(4,2,4)
plot(k,abs(X)); grid; axis('tight')

5 | P a g e

% Now to close the loop, let's explicitly decimate x to see if it matches
% the original xd

y = x(1:D:end);
ny = (0:length(y)-1)';
Y = fft(y,KD);

subplot(4,2,5)
plot(nd,real(y(1:ND))); grid; axis('tight')
subplot(4,2,6)
plot(kd,abs(Y)); grid; axis('tight')

subplot(4,2,7)
plot(ny,real(y)); grid; axis('tight')

norm(Y-XD)/norm(XD)
norm(y(1:ND)-xd)/norm(xd)

