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1 Introduction 
We derive expressions for the mean, mean-square, and variance, of the discrete-time Fourier 
transform (DTFT) and K-point discrete Fourier transform (DFT) of a realization x[n] of an N-
point complex-valued stationary random process. We require K ≥ N. For the case where x[n] is 
also Gaussian and white, we also compute the probability density function (PDF) of the DTFT 
and DFT. x[n] is not restricted to be zero mean; it may have a non-zero, complex mean µ. Thus 
we can decompose x[n] into a constant and a zero-mean part: 

 [ ] [ ]x n x nµ= +   (1) 

We denote the variance of x[n] as 2
xσ .In addition, we will allow for the use of a real-valued N-

point window function w[n] in computing the DTFT or DFT.1 The windowed sequence is 
denoted xw[n] = w[n]x[n]. 

1.1 Summary of Main Results 
The following two tables summarize the main results derived in this memo. In these tables, 
Xw(ω), X(ω), and W(ω) are the DTFTs of xw[n], x[n], and w[n], respectively. Xw[k], X[k], and 
W[k] are the DFTs of xw[n], x[n], and w[n], respectively. µ is the mean of x[n], and the symbol 

ω⊗ denotes circular convolution in frequency on the interval [−π,π], and the symbol k⊗ denotes 
discrete circular convolution in frequency on the interval [0,K−1]. ( )xS ω



 and [ ]xS k


 are the 

continuous- and discrete-frequency power spectra of [ ]x n . Ew is the energy in the window 
function w[n]. Finally, γr(ω) and γr(ω) are the (frequency-dependent) means of the real and 
imaginary parts of Xw(ω), which we denote Xrw(ω) and Xrw(ω); see Eqn. (32) for the value of 
γr(ω) and γr(ω). 
 

                                                 
1 Most of the results obtained would be the same if we allowed the window to be complex, but that case is not often 
of interest. 
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Table 1. Probability Density Function of the DTFT or K-point (K ≥ N) DFT 
of N-point Complex White Random Signal x[n] with Real Window w[n]. γr 

and γI are frequency-dependent. 

Case PDF 
Non-zero mean x[n], equal real and imaginary variance 

Xwr(ω) or 
Xwr[k] 

( )2 2
2

1 exp wr r w x
w x

X E
E

γ σ
π σ

 − −  
 

Xwi(ω) or 
Xwi[k] 

( )2 2
2

1 exp wi i w x
w x

X E
E

γ σ
π σ

 − −  
 

|Xw(ω)| or 
|Xw[k]| 

( )2 2 2
02 2

2 2
exp , 0

0, otherwise

w x
w x w x

X X
X E I X

E E

γ
γ σ

σ σ

    − + ≥       



 

Y ≡ 
|Xw(ω)|2 or 

|Xw[k]| 

( )2 2
02 2

21 exp , 0

0, otherwise

w x
w x w x

Y
Y E I Y

E E

γ
γ σ

σ σ

    − + ≥       



 

arg{ Xw(ω)} or 
arg{Xw[k]} see text 

Zero mean x[n], equal real and imaginary variance 

Xwr(ω) or 
Xwr[k] 

2 2
2

1 exp wr w x
w x

X E
E

σ
π σ

 −   

Xwi(ω) or 
Xwi[k] 

2 2
2

1 exp wi w x
w x

X E
E

σ
π σ

 −   

|Xw(ω)| or 
|Xw[k]| 

2 2
2

2
exp , 0

0, otherwise

w x
w x

X
X E X

E
σ

σ

  − ≥   



 

Y ≡ 
|Xw(ω)|2 or 

|Xw[k]| 

2
2

1 exp , 0

0, otherwise

w x
w x

Y E Y
E

σ
σ

  − ≥  



 

arg{ Xw(ω)} or 
arg{Xw[k]} 

1 ,
2
0, otherwise

π φ π
π

 − ≤ ≤
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Table 2. Mean and Variance for DTFT and K-point (K ≥ N) DFT of N-point 
Complex Random Signal x[n] with Real Window w[n]. 

Case Mean Variance 
Properties of DTFT 

General x[n] ( )Wµ ω  ( ) ( )21
2 xW Sωω ω
π

⊗


 

White x[n] ( )Wµ ω  2
w xE σ



 

White x[n], no window 
[ ]
[ ]

( )1 2sin 2
sin 2

j NN
e ωω

µ
ω

− −  2
xNσ


 

Properties of DFT 

General x[n] [ ]W kµ  [ ] [ ]21
k xW k S k

K
⊗



 

White x[n] [ ]W kµ  2
w xE σ



 

White x[n], no window 
[ ]
[ ]

( )1sin
sin

j k N KkN K
e

k K
ππ

µ
π

− −  2
xNσ


 

White x[n], no window, 
K = N [ ]N kµδ  2

xNσ


 

 
 

1.2 Fourier Transform Relationship: 
Recall that the definition of the DTFT is [1] 

 ( ) [ ] j n

n
X x n e ωω

∞
−

=−∞
= ∑  (2) 

Since we assume x[n] has finite support on [0,N−1], this becomes for our purposes 

 ( ) [ ]
1

0

N
j n

n
X x n e ωω

−
−

=
= ∑  (3) 

The definition of the K-point DFT for a sequence x[n] of length N ≤ K is2 

 [ ] [ ]
1

2

0
, 0 1

N
j kn K

n
X k x n e k Kπ

−
−

=
= ≤ ≤ −∑  (4) 

Note that for the conditions given, namely x[n] of finite length N ≤ K, we have 

                                                 
2 The case where the DFT is sampled at K < N frequencies requires the definition of an aliased version of x[n] for 
use in (4); this technique is called data turning [2]. Many, though not all, of the formulas in this memo still apply in 
this case. However, it is unusual to have K < N so, in order to have one less complication, we do not include that 
case here. 
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 [ ] ( ) 2 , 0 1k
K

X k X k Kπω
ω

=
= ≤ ≤ −  (5) 

Thus, the DFT samples a DTFT in frequency. 

2 Mean 

2.1 Mean of Xw(ω) 
The mean of Xw(ω) is 

 

( ) [ ] [ ] [ ] [ ] [ ] [ ]

[ ]

( )

1 1 1

0 0 0
1

0

N N N
j n j n j n

w
n n n

N
j n

n

X w n x n e w n x n e w n x n e

w n e

W

ω ω ω

ω

ω

µ

µ ω

− − −
− − −

= = =
−

−

=

= = =

=

=

∑ ∑ ∑

∑  (6) 

where the overbar indicates expected value. Thus, a nonzero mean in the input data contributes a 
nonzero mean term at every frequency in the DTFT, not just at “DC” (ω = 0). This is not 
surprising; the result is simply the DTFT of the finite-length constant signal corresponding to the 
input mean. The relative values of the mean at different frequencies are determined by the 
window spectrum. Note that if the input process mean µ = 0, the mean of the DTFT is zero at all 
frequencies ω and in all cases of window shape. 
 
The case where w[n] = 1, 0 ≤ n ≤ N−1 (referred to here as the “no window” case) is worth special 
mention. In this case it is easy to show that [1] 

 ( ) [ ]
[ ]

( )1 2sin 2
sin 2

j NN
W e ωω

ω
ω

− −=  (7) 

Thus the mean of Xw(ω) is a scaled “asinc” or Dirichlet function. 
 

2.2 Mean of Xw[k] 
The mean of Xw[k] is readily obtained by using (5) in (6): 

 [ ] [ ]2
w

kX k W W k
K
πµ µ = = 

 
 (8) 

In the “no window” case of w[n] = 1, 0 ≤ n ≤ N-1, this becomes, using (7), 

 [ ] [ ]
[ ]

( ) ( )1sin
no window

sin
j k N KkN K

X k e
k K

ππ
µ

π
− −=  (9) 
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Note that (9) is indeterminate at k = 0; L’Hospital’s rule or direct computation of the k = 0 case 
gives [ ]0X  = Nµ. If in addition K = N, Eqn. (9) simplifies further to 

 [ ] [ ] ( )
, 0  ("DC term")

, no window
0, 1, , -1
N k

X k N k K N
k N

µ
µδ

=
= = = = …

 (10) 

This occurs because when K = N, the DFT samples the underlying DTFT at the zero crossings of 
the asinc function, except for the sample at k = 0, corresponding to ω = 0. Thus in this case, a 
nonzero mean input results in a nonzero mean of the DFT only at the DC term, k = 0. If K > N or 
a non-trivial window is used, all of the DFT samples will, in general, have a non-zero mean. 
 
Again, note that if the input process mean µ = 0, the mean of the DFT is zero at all frequency 
indices k and in all cases of window shape and length. 
 
The DFT results are illustrated in the following figures. The first figure compares the theoretical 
result of (9) with the result obtained from a MATLAB simulation using complex Gaussian 
random noise for x[n] with no windowing, 3 5jµ = −  (so |µ|2 = 34), and the standard deviations 

of the real and imaginary parts set to 1
rxσ =  and 2

ixσ = ; thus 2
xσ  = 5. An input sequence of N 

= 7 samples was used with a DFT size of K = 32. The blue line is the sample mean of X[k] for 
only 5 trials; the red line is the theoretical result of Eqn. (9). The mean shows the expected asinc 
structure rotating through the real and imaginary parts of X[k] as the argument of (9) varies. The 
structure of the mean function is clear, and the agreement with theoretical reasonable, with only 
5 trials. The next figure shows the same example for 100 trials; the two curves are now in much 
closer agreement. 
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The next figure shows the result for 20 random trials of the same input signal, but with K = N = 
32, corresponding to the case of Eqn. (10). Notice that the mean of X[0] equals 32(3−j5) = 
96−j160 to a very good approximation, while X[k] approaches zero for all other k, both as 
predicted. 
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3 Mean-Square 

3.1 Mean-Square of Xw(ω) 
The mean-square of Xw(ω) is (recalling that w[n] is real-valued) 
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( ) [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]( ) [ ]( )

[ ] [ ] [ ] [ ] [ ] [ ]( )

1 12

0 0

1 1

0 0
1 1

0 0
1 1

0 0

2

0

N N
j n j m

w
n m

N N
j n j m

n m
N N

j n j m

n m
N N

j n j m

n m
N

j n

m

X w n x n e w m x m e

w n w m x n x m e e

w n w m x n x m e e

w n w m x n x m e e

w n w m x n x m x n x m e

ω ω

ω ω

ω ω

ω ω

ω

ω

µ µ

µ µ µ

∗− −
− −

= =

− −
∗ − +

= =
− −

∗ − +

= =
− −

∗ ∗ − +

= =
−

∗ ∗ ∗ −

=

  
=     

  

=

=

= + +

= + + +

∑ ∑

∑ ∑

∑ ∑

∑ ∑  

   

1 1

0

N
j m

n
e ω

−
+

=
∑ ∑

(11) 

Recall also that [ ]x n  is zero mean, and define the autocorrelation function of [ ]x n  as 

 [ ] [ ] [ ]xs k x n x n k∗= +


   (12) 

Note that [ ] 2 20x x xs σ σ= =
 

. Using these properties and definitions in (11) gives 

 

( ) [ ] [ ] [ ] [ ] [ ] [ ]( )
[ ] [ ]

[ ] [ ] [ ]

[ ] [ ]

[ ] [ ] [ ]

1 12 2

0 0
1 1

2

0 0
1 1

0 0
1 1

2

0 0
1

0

0 0

N N
j n j m

w
n m

N N
j n j m

n m
N N

j n j m
x

n m
N N

j n j m

m n
N

j n j m
x

m

X w n w m x n x m x n x m e e

w n w m e e

w n w m s m n e e

w n e w m e

w n w m s m n e e

ω ω

ω ω

ω ω

ω ω

ω ω

ω µ µ µ

µ

µ

− −
∗ ∗ ∗ − +

= =
− −

− +

= =
− −

− +

= =

− −
− +

= =

−
− +

=

= + + +

= + +

+ −

  
=     

  

+ −

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑





   

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0

22

2 22

1
2

1
2

N

n

x

x

W W W S d

W W S

π

π

ω

µ ω ω α ω α α
π

µ ω ω ω
π

−

=

∗

−

= + −

= + ⊗

∑

∫ 

 (13) 
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where ( )xS ω


 is the power spectrum of [ ]x n  (DTFT of [ ]xs k


) and the symbol ω⊗ denotes 
circular convolution in frequency on the interval [−π,π]. The derivation of the second term in the 
second-to-last line is given in Appendix 1 of this memorandum. 
 
If x[n] is white, then [ ] [ ]2

x xs k kσ δ=


 (and ( ) 2
x xS ω σ=


) and (13) reduces to 

 

( ) ( ) [ ] [ ] [ ]

( ) [ ] ( ) ( )

( ) [ ]( )

1 12 22 2

0 0
21 22 2 22 22

0
22 2

2

 white

N N
j n j m

w x
n m
N

x
x

n

w x

X W w n w m m n e e

W w n W W d

W E x n

ω ω

π

π

ω µ ω σ δ

σ
µ ω σ µ ω ω ω

π

µ ω σ

− −
− +

= =

−

= −

= + −

= + = +

= +

∑ ∑

∑ ∫  (14) 

where [ ] ( ) ( )2 21
0 1 2N

w nE w n W d
π

π
π ω ω−

= −
≡ =∑ ∫  is the energy in the window sequence. The 

second version of the result in the second-to-last line follows from the first by Parseval’s relation 
[1]. 
 
Finally, in the no-window case, so that Ew = N, 

 ( ) [ ]
[ ] ( )

2
2 2 2sin 2

stationary white input, no window
sin 2 x

N
X N

ω
ω µ σ

ω
= +  (15) 

3.2 Mean-Square of Xw[k] 
The mean square of the DFT is obtained in a manner directly analogous to the DTFT case (see 
Appendix 1 for some of the details): 

 
[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

12 22

0

2 22

1 , 0, , 1

1 , 0, , 1

K

w x
p

k x

X k W k W p W p S k p n K
K

W k W k S k n K
K

µ

µ

−
∗

=
= + − = −

= + ⊗ = −

∑ 







 (16) 

where k⊗  denotes circular convolution in discrete frequency over the interval [0,K−1]. When 
x[n] is white this becomes 

 
[ ] [ ] [ ] [ ] [ ]

[ ] ( )

21 12 2 2 22 22 2

0 0
22 2 stationary white input

N K
x

w x
n k

w x

X k W k w n W k W k
K

W k E

σ
µ σ µ

µ σ

− −

= =
= + = +

= +

∑ ∑
 (17) 

In the no-window case, this reduces further to 
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 [ ] [ ]
[ ] ( )

2
2 2 2sin

stationary white input, no window
sin x

kN K
X k N

k K
π

µ σ
π

 
= +  

 
 (18) 

If in addition K = N, we have 

 

[ ] [ ]

( )

2 22 2

22 2

2

, 0  ("DC term")

, 1, , -1

stationary white input, no window, 

x

x

x

X k N k N

N N k

N k K

K N

µ δ σ

µ σ

σ

= +

 + == 
= …

=

 (19) 

The next figure verifies the no window, K = N result of (18) for the same example discussed 
previously and 100 random trials. Again, the blue line is the sample mean-square while the red 
line is the theoretical expression of Eqn. (18). The value expected at k = 0 is 22 2

xN Nµ σ+  = 
(49)(34)+(7)(5) = 1701, while the “white noise” level is (7)(5) = 35, consistent with the 
minimum level of the sidelobes, as seen in the red curve, which is a plot of Eqn. (18). The blue 
curve is a good match to the theoretical result. If the number of random trials is increased, the 
blue curve matches the red more closely. 
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4 Variance 

4.1 Variance of Xw(ω) 

Since 
2 22 22

u uu u uσ µ= − = −  for any complex random variable u with mean µu, we have 

for Xw(ω) 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 2 222

2

2

1
2

1
2

1 stationary input
2

wX x

x

x

W W S d W

W S d

W S

π

π
π

π

ω

σ µ ω α ω α α µ ω
π

α ω α α
π

ω ω
π

−

−

= + − −

= −

= ⊗

∫

∫







 (20) 

If x[n] is white, this becomes 

 ( )2 2 stationary white input
wX w xEσ σ=  (21) 

and in the no-window case this further reduces to 

 ( )2 2 stationary white input, no windowX xNσ σ=  (22) 

4.2 Variance of Xw[k] 
Similarly, the variance of the DFT is again obtained in direct analogy to the DTFT case. The 
result is 

 [ ] [ ] ( )22 1 , 0, , 1 stationary input
wX k xW k S k n K

K
σ = ⊗ = −



  (23) 

When x[n] is white this becomes 

 ( )2 2 stationary white input
wX w xEσ σ=  (24) 

In the no-window case, this reduces further to 

 ( )2 2 stationary white input, no window, any window lengthX xNσ σ=  (25) 

which does not depend on the window length. 
 
Note that, unlike the mean and mean-square, the variance is independent of the DFT index k for 
any value of the input mean or of the DFT size K. The following figure continues the previous 
example, this time for 10,000 trials. 
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5 PDF of Xw(ω) and Xw[k] 
We again decompose x[n] into its mean r ijµ µ µ= +  and a time-varying part [ ]x n  as in Eq. (1). 

We now also assume that the real and imaginary parts of [ ]x n  are both independent, identically-

distributed (iid) Gaussian random processes, with equal variances 2 2xσ . The real and imaginary 

parts of x[n] are therefore Gaussian with equal variances 2 2xσ  but non-zero and different means 
µr and µi, respectively. To make derivation of the probability density function (PDF) minimally 
tractable, we will also assume the input noise is stationary and white. We will, however, still use 
a window w[n]. The zero-mean special case is a standard model for such processes as receiver 
noise and target fluctuations for “many-scatterer” targets, and is therefore a major case of interest.  

5.1 Marginal PDFs of Real and Imaginary Parts 
We denote the real and imaginary parts of x[n] as xr[n] and xi[n], the real and imaginary parts of 
X(ω) as Xr(ω) and Xi(ω), and of X[k] as Xr[k] and Xi[k]. Similar notations apply for [ ]x n  and 

[ ]X k . When a non-trivial window is present, we will use subscripts w or wr and wi as needed. 
 
It is convenient to consider ( )wX ω  first. The real and imaginary parts of ( )wX ω  are 

 
( ) [ ] [ ] ( ) [ ] ( ){ }

( ) [ ] [ ] ( ) [ ] ( ){ }

1

0
1

0

cos sin

cos sin

N

wr r i
n
N

wi i r
n

X w n x n n x n n

X w n x n n x n n

ω ω ω

ω ω ω

−

=

−

=

= +

= −

∑

∑



 



 

 (26) 
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Since each is a weighted sum of zero-mean Gaussian random variables (r.v.s), it follows that 
both ( )wrX ω  and ( )wiX ω  are themselves zero-mean Gaussian r.v.s [3]. However, we cannot 
yet write the marginal Gaussian PDFs because we do not yet know their variance. 
 
Consider the mean-square of ( )wrX ω : 

 

( ) [ ] [ ] ( ) [ ] ( ){ }

[ ] [ ] ( ) [ ] ( ){ }

[ ] [ ] [ ] [ ] ( ) ( ){
[ ] [ ] ( ) ( ) [ ] [ ] ( ) ( )
[ ] [ ] ( ) ( )}

1
2

0

1

0

1 1

0 0

cos sin

cos sin

cos cos

cos sin sin cos

sin sin

N

wr r i
n

N

r i
m

N N

r r
n m

r i i r

i i

X w n x n n x n n

w n x m m x m m

w n w m x n x m n m

x n x m n m x n x m n m

x n x m n m

ω ω ω

ω ω

ω ω

ω ω ω ω

ω ω

−

=

−

=

− −

= =

 = + 
 

 + 
 

= +

+ + +

+

∑

∑

∑∑



 


 


 


   
 

 


(27) 

Because [ ]rx n  and [ ]ix n  are zero mean, white, and i.i.d., (27) reduces to 

 

( ) [ ] [ ] [ ] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

[ ] ( ) ( )

[ ] ( ) ( ){ }

21 1
2

0 0

2

2 1
2 2 2

0

2

cos cos
2

0 cos sin 0 sin cos

sin sin
2

cos sin
2

stationary zero-mean white uncorrelated compl
2

N N
x

wr
n m

x

N
x

n

x
w

X w n w m n m n m

n m n m

n m n m

w n n n

E

σ
ω δ ω ω

ω ω ω ω

σ
δ ω ω

σ
ω ω

σ

− −

= =

−

=

 = − + 
 

+ + +

  + −  
  

 
= + 

 

=

∑∑

∑





 



( )ex input

 (28) 

In the no-window case, this becomes 

 ( )

( )

2
2

2
stationary zero-mean white uncorrelated complex input, no window

x
wrX N

σ
ω =

 (29) 

The same value results for ( )2
wiX ω . This should not be surprising; since the input noise is zero 

mean i.i.d. with half the power in the real and imaginary parts, and the mean is zero, the power 
splits evenly between the real and imaginary parts of the DTFT as well. The total power is just 
the sum of imaginary and real channel powers, which is again 2

xNσ . 
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We can now write the marginal PDFs of the real and imaginary parts of the DFTF, ( )wrX ω  and 

( )wiX ω . They are 

 
( ) ( )

( )

2 2
2

1 exp

stationary zero-mean white uncorrelated complex input

wr wiw w w w xX X
w x

p X p X X E
E

σ
π σ

 = = −  

  

 (30) 

Furthermore, because the derivation and result do not depend in any way on the particular value 
of frequency ω, the marginal PDFs of the real and imaginary parts of the DFT, [ ]wrX k  and 

[ ]wiX k , are exactly the same. 
 
Now consider Xw(ω). Since [ ] [ ]x n x n µ= +  for 0 ≤ n ≤ N−1, using (6) gives 

 ( ) ( ) ( )w wX X Wω ω µ ω= +  (31) 

so that 

 
( ) ( ) ( ){ } ( ) ( )
( ) ( ) ( ){ } ( ) ( )

Re

Re
wr wr wr r

wi wi wi i

X X W X

X X W X

ω ω µ ω ω γ ω

ω ω µ ω ω γ ω

= + ≡ +

= + ≡ +

 

 

 (32) 

For a given frequency ω, the terms ( )rγ ω  and ( )iγ ω  are constants. We also define γ(ω) = 

γr(ω)+ jγi(ω). These shift the means of the Gaussian PDFs of ( )wrX ω  and ( )wiX ω  but do not 

affect the variances. Consequently, the marginal PDFs of ( )wrX ω  and ( )wiX ω  are non-zero 
mean Gaussians: 

 

( ) ( )

( ) ( )

( )

2 2
2

2 2
2

1 exp

1 exp

stationary non-zero-mean white uncorrelated complex input

wr

wi

X wr wr r w x
w x

X wi wi i w x
w x

p X X E
E

p X X E
E

γ σ
π σ

γ σ
π σ

 = − −  

 = − −  
(33) 

In general, the two means are different, so ( )wrX ω  and ( )wiX ω  are not i.i.d. Also, though not 
shown explicitly for compactness, the mean of the PDF is a function of frequency through 

( )rγ ω  or ( )iγ ω . Finally, since again the particular value of ω does not affect the form of the 
result, Eqn. (33) also applies to the marginal PDFs of the DFT, with ω evaluated at 2πk/K for the 
DFT index k of interest. 
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The following figures illustrate these results for the same case of N = 7 and K = 32 used earlier. 
In accordance with the assumptions, the mean of x[n] is also kept at µ = 3−j5, but the variances 
of the real and imaginary parts are now made equal, specifically a value of 2, so the total 
variance is 2

xσ  = 4. The observed PDFs of Xr[0] and Xi[0] for 10,000 trials and the theoretical 
results of Eqn. (33) are shown in the figure, and agree very well. As the number of trials 
increases, the fit between the histograms and theoretical results becomes still closer. Note that 
the means of Xr[0] and Xi[0] at ω or k = 0 are, respectively, Nµr = (7)(3) = 21 and Nµi = (7)(−5) = 
−35. 
 

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Xr

Pr
ob

ab
ilit

y 
De

ns
ity

N=7, K=32, Ntrials=10000

Theoretical & Observed PDFs of Xr and Xi

-50 -40 -30 -20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Xi

Pr
ob

ab
ilit

y 
De

ns
ity

N=7, K=32, Ntrials=10000

 
 
When the mean of the input is set to zero but all other conditions remain the same, the following 
magnitude and phase PDFs are observed, now in excellent agreement with Eqn. (30). 
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5.2 Joint PDF and Correlation of Real and Imaginary Parts 
It is not true in general that two marginally Gaussian r.v.s are also jointly Gaussian; see Example 
6-3 in [3] for a counter-example. However, it is true ([3], p. 176) that wrX  and wiX  are jointly 
Gaussian if any linear combination of them, wr wiX Xα β+ , is Gaussian. It is clear that 

wr wiX Xα β+   is a sum of weighted Gaussian r.v.s and is therefore Gaussian, since wrX  and wiX  
are each sums of weighted Gaussian r.v.s; thus wrX  and wiX  are jointly Gaussian. It then follows 
that wrX  and wiX  are also jointly Gaussian since they merely shift the mean of the distribution 
away from (0,0). The joint PDF of ( )wrX ω  and ( )wiX ω  is thus a bivariate Gaussian distribution, 
and for our particular means and variances is therefore of the form [4] 

 
( ) ( )

( ) ( )( ) ( ) }
2 22 2

2 2

1 1, exp
11

2

wr wiX X wr wi
w x riw x ri

wr r ri wr r wi i wi i

p X X
EE

X X X X

σ ρπ σ ρ

γ ρ γ γ γ


= −

−− 

 − − − − + −  





 (34) 

where ( ) 22ri wr wi r i w xX X Eρ γ γ σ= −  is the correlation coefficient of ( )wrX ω  and ( )wiX ω  ([3], 

p. 210), again specialized to our particular variances. If ρri = 0, then ( )wrX ω  and ( )wiX ω  are 
uncorrelated and, since also Gaussian, independent. To determine these characteristics, it is 
convenient to start with ( )wX ω . 
 
An important detail implied by the notation above is that the random variables ( )wrX ω  and 

( )wiX ω  are evaluated at the same frequency in the DTFT. One could consider the joint 

distribution of ( )1wrX ω  and ( )2wiX ω . However, our primary interest is in deriving the statistics 
of the magnitude and phase of the DTFT and DFT at a particular frequency, so we will restrict 
ourselves to the case ω1 = ω2 ≡ ω. 
 
Remembering that both wrX  and wiX  are real numbers, 

 

( )( )

0 0

wr wi r i r wr i wi r i

r i r wi i wr wr wi r i

wr wi

wr wi

X X X X

X X X X

X X

X X

γ γ γ γ γ γ

γ γ γ γ γ γ

− = + + −

= + + + −

= + +

=

 

   

 

 

 (35) 

The last term is 
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 (36) 

Again using the zero mean, white, i.i.d properties of [ ]x n , we obtain 

 

( ) ( ) [ ] [ ] [ ] ( ) ( )

[ ] ( ) ( )

[ ] ( ) ( ) ( ) ( ){ }

21 1
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∑∑

∑

 



  (37) 

The correlation coefficient riρ  is therefore also equal to zero. Since wrX  and wiX  are both 
Gaussian, this in turn implies that they are independent Gaussians ([3], p .211). Furthermore, 
from (35), (37), and the definition of ρri we now see that the correlation coefficient of wrX  and 

wiX  is also zero: 

 
( )

2 2

2 2 0wr wi r i wr wi
ri

w x w x

X X X X
E E

γ γ
ρ

σ σ

−
= = =

 

 (38) 

The joint PDFs of wrX  and wiX  and of wrX  and wiX  become 

 
( )

( ) ( )

2 2
2 2

1 1, exp
wr wi

wr wi

wr wi wr wiX X
w x w x

wr wiX X

p X X X X
E E

p X p X

π σ σ

   = − +    

=

 

 

   

 

 (39) 

and 
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( ) ( ) ( )

( ) ( )

2 2
2 2

1 1, exp
wr wi

wr wi

X X wr wi wr r wi i
w x w x

X wr X wi

p X X X X
E E

p X p X

γ γ
π σ σ

   = − − + −     
=

 (40) 

Thus wrX  and wiX  are independent. 3 

5.3 PDFs of Magnitude, Magnitude-Squared, and Phase 
Finally, since the PDFs of Xr and Xi are non-zero-mean Gaussians with the same variance 

2 2w xE σ , the PDFs of |X[k]| and φ = arg{X[k]} can be found. Using standard results (see pp. 
191-192 in [3]), the PDF of |X[k]| is known to be a Rician distribution: 

 ( ) ( )2 2 2
02 2

2 2
exp , 0

0, otherwise

w x
X w x w x

X X
X E I X

p X E E

γ
γ σ

σ σ

   − + ≥      =   



 (41) 

where I0(·) is the modified Bessel function of the first kind and zero order. 
 
The PDF of the phase φ, while conceptually simple, is very lengthy and tedious to compute and 
does not result in a compact closed form. For example, the joint PDF of Eqn. (40) can be easily 
converted to polar coordinates using the approach in ([3], pp. 202-203), but the result is lengthy, 
and must still be integrated over the magnitude to get the marginal PDF for phase. Not 
surprisingly, however, the phase in the non-zero-mean case clusters around the value arg(γ), and 
the spread around that value is determined by the variance of Xw. 
 
The following figure shows the observed and predicted PDF of |X(0)| and the observed PDF of 
arg{X(0)}, again for the same case used previously. The mean of X(0) in this case is γ = Nµ = 
21−j35. Note that the PDF of |X(0)| clusters around |γ| = 40.8, and the phase PDF clusters around 
arg{γ} = −0.33π (denoted by the vertical marker line). 
 

                                                 
3 Thanks to Roy Sivley of the MITRE Corporation for correcting an error in a previous version of this memo that 
resulted in an incorrect conclusion that wrX  and wiX  are not independent. 
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The PDF of Y = |X|2 can be obtained from the PDF of |X| using standard results from random 
processes; see ([3], p. 132). For the magnitude-squared of the DFT or DTFT at a particular 
frequency, the result is a noncentral chi-square distribution with two degrees of freedom [5]: 

 ( ) ( )2 2
02 2

21 exp , 0

0, otherwise

w x
Y w x w x

Y
Y E I Y

p Y E E

γ
γ σ

σ σ

   − + ≥      =   



 (42) 

The next figure shows the very good agreement between this formula and the histogram of the 
magnitude-squared of the DFT for the same example. Note that the histogram is now centered at 
about (40.8)2 = 1,664. 
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When the mean of the input is zero (i.e., wr wrX X=   and wi wiX X=  , these reduce to the better-
known cases (see pp. 190-191 or pp. 202-203 in [3]) of a Rayleigh PDF for the magnitude, 
exponential PDF for the magnitude-squared, and a uniform PDF for the phase. Specifically, 

 ( )
2 2

2
2

exp , 0

0, otherwise

w x
X w x

X
X E X

p X E
σ

σ

  − ≥  = 



 (43) 

 ( )
2

2
1 exp , 0

0, otherwise

w x
Y w x

Y E Y
p Y E

σ
σ

  − ≥  = 



 (44) 

 ( )
1 ,

2
0, otherwise

pφ
π φ π

φ π
 − ≤ ≤= 


 (45) 

For 10,000 trials, the agreement between these formulas and the observed histograms for the 
same case just shown is very good, as seen in the next two figures. 
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Appendix 1 

 
The goal is to show that  

 [ ] [ ] [ ] ( ) ( )
1 1 2

0 0

1
2

N N
j n j m

x x
n m

w n w m s m n e e W S d
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ω ω
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α ω α α
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− −
− +

= = −

− = −∑ ∑ ∫ 

 (46) 

The approach begins by expressing each function in the summand on the left hand side as the 
inverse discrete time Fourier transform of the corresponding spectrum, giving 
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∑
  (47) 

The extension of the summation limits in the second line is possible because the finite length 
window still limits the summand range. 
 
The last term in brackets is [A1.1] 

 ( ) ( )2 2j m
D

m p
e pχ β ω π δ χ β ω π

∞ ∞
+ +

=−∞ =−∞
= + + +∑ ∑  (48) 

where δD(·) is the Dirac impulse function. Only one impulse occurs within the 2π range of any of 
the integrands. Choosing to integrate over χ first, we have 
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 (49) 

where the last step used the sifting property of the impulse function. Evaluating the second 
summation gives a similar impulse train; integrating next over β results in elimination of the 
integral and β = −α. We also note that, for real w[n], W(−α) = W*(α). Thus we finally obtain the 
result used in (13): 
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 (50) 

The symbol ω⊗  thus represents a circular convolution in the frequency domain over the interval 
[−π,π]. 
 
Exactly the same derivation approach can be used to obtain the similar result for the DFT instead 
of the DFT. The sequences w[n], w[m], and [ ]xs m n−



 are now represented by their inverse 
discrete Fourier transforms (DFTs) instead of inverse DTFTs; for instance, 

 [ ] [ ] ( )
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1 exp 2 , 0, , 1
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π
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The step analogous to Eqn. (48) will be of the form 
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For discrete indices p, q, k, and r. The final result will be the DFT analogy to (50), 
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where the symbol k⊗  denotes a discrete circular convolution in frequency in the interval 
[0,K−1]. 
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Appendix 2 

 
The following relations were used in an earlier version of this memo. Though not used for the 
current results, they are retained here for possible future use. They would most likely be needed 
if some of the results were expanded to include unequal variances and/or non-zero means in the 
real and imaginary parts of the input noise, or if the covariance between real and imaginary parts 
of the spectrum at different frequencies was needed. 
 
Adapting summations #1 and 2 in Section 1.351 (p. 31) of [A2.1] gives 
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Using a double-angle formula and adapting summation #1 in Section 1.342 (p. 30) gives 
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That same summation, along with summation #2 in the same section, gives 
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