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1 Goal

In [1], the integration loss L in computing the coherent sum of N samples x, with
weights a, is considered. The coherent sum w is

w= i an X, 1)
)

When the samples are contaminated by stationary white Gaussian phase noise of variance
o?, L is given by the formula
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Reference [1] is included in its entirety in Section 5 of this note, and in the remainder we
refer to the derivations and equations there to avoid repeating them.

As noted in [1], the Gaussian probability density function (PDF) assumed for the
phase noise is not physically possible, since it is not confined to the interval [ 7, 7).
While the Gaussian PDF is still a very good approximation for small o2, in this note we
add a small extension to that analysis by re-deriving the result for a more realistic phase
noise PDF.

2 The Phase Noise PDF

The PDF of interest is the “Tikhonov distribution” given by Van Trees [2]. In the
notation of [1], this is

) 1 acosg,
p¢(¢n’a)_2ﬂ_|0(a)e (3)

This PDF evidently describes the statistics of the steady state phase estimate of a first
order phase locked loop tracking a sinusoid in additive white Gaussian noise. For our
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purposes, it provides a family of phase PDFs that vary from uniform (« = 0) to, in the
limit, a nonrandom phase of zero as @ — oo, but is always confined to [—7, z) and thus is
always a strictly valid PDF for phase. Thus, we can consider the effect of varying degrees
of phase noise, previously achieved by varying the variance in the Gaussian PDF model
of [1], by instead varying « in the Tikhonov PDF. Figure 1 illustrates the Tikhonov PDF
for several different values of the parameter c.
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Figure 1. The Tikhonov PDF for phase.

3 Coherent Integration Loss

Following the process in [1], we need to compute the quantity @, which is

el LT g eacoss,
q"E{e }_2nlo(a)_j,[e N “

The integral portion of Eq. (4) can be put into a more convenient form as follows:
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The last step follows from one integral form of the definition of the modified Bessel
function of the first kind [3]. Thus,

D = |1(OC) (6)

It then follows from the argument in [1] that the coherent integration loss is

L= nzm )

2
>

n=1

and, for the case where all the a, =1,

L@/ 1o(@)] (N-1)

N

(8)
Finally, when N is large,
Lx[ly(a)/1o(2)]’, N1 )

Figure 2 illustrates the loss for the case where all a, = 1, i.e., Eq. (8), as a function
of the number of samples integrated and the PDF spread parameter «. For large « (phase
nearly constant), the loss approaches L = 1 (0 dB), as would be expected. As the phase
PDF becomes more spread (« approaching zero), indicating a greater degree of phase
noise, the loss increases, becoming relatively severe for o <5.
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Figure 2. Loss as a function of « and N. Left: linear scale. Right: decibel scale.

The random phase case corresponds to « = 0. For this case, Eq. (8) shows that the
loss becomes, for a, = 1, L = 1/N. This example shows that when the phase of the
summed samples are all random, they add on a “power basis” instead of a voltage basis.
That is, the power of the sum is N times the power of a single sample, instead of N2, a
reduction in gain by the factor N. This, of course, is exactly the way random noise
samples behave.
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5 Original Paper

A copy of reference [1] is included in the next three pages.?

1 A trivial correction concerns Eq. (15) in [1]. That expression for L is not in decibels, so the “dB” at the
end of the equation should be deleted.
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Abstract—We develop a simple analytic expression for the
change in coherent weighted integration gain due to a white
Gaussian error or noise in the phase of the integrated samples
Our expression is shown by simulation to be very accurate for
any reasonable value of phase noise standard deviation. The
result is useful in estimating the performance impact on coherent
signal processing systems of oscillator noise, residual motion
compensation errors, and other system imperfections that are
manifested primarily as phase errors.

Index Terms—Coherent integration, integration loss, phase
noise, radar, sonar.

1. DERIVATION OF COHERENT INTEGRATION ERROR

ONSIDER  a  series of complex data samples
Cm., = Aefl@+e) where A and ¢ are constants, but
the sequence {¢b, } are independent and identically distributed
(i.id) zero-mean Gaussian random variables with standard
deviation &, We consider Ae?® to be the desired measurement
and ¢,, to be a phase error. Phase errors frequently arise from
phase deviations in the local oscillators of radar, sonar, and
communication systems, uncompensated sensor motion errors,
and other sources. The Gaussian model for phase errors is a
common assumption [1], and it has been shown that oscillator
phase errors are in fact Gaussian under widely applicable
assumptions [2]. Note that the power (magnitude-squared) of
ap is A% A weighted coherent sum of N such data values is
formed as

N

w= 2 lyyiEsy

n=1

n

where the {a,, } are known deterministic weights. Equation (1)
can model a wide variety of signal processing algorithms that
involve coherent integration. Examples include coherent detec-
tion based on multiple samples, clutter cancellation, linear fil-
tering, and computation of the discrete Fourier transform. The
power in w is the random variable
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We are interested in estimating the change in the power of the
coherently integrated and detected sample = due to the phase
noise. This change 15 a sigmificant performance metric in many
systems, e.g., radar moving target indication [3], [4]. The power
n the coherent sum in the absence of phase nowse (¢, = 0)1s
just A% P P Anth, A2 3o Gn “.In the coherent integra-
tion case when a,, = 1 ¥n, this simplifies to ¥V2A%. As another
example, a radar clutter canceller always has E" a,, =0 sothe
power is zero in the absence of phase noise.

When phase noise is present, z is a random variable, and we
must compute its expected value

E{z} =42 Z Z ity 12 {r:“'&" _"‘"'J}

noom

=42 Z Z ity ”u’u Vi (3)
noom
where

Vi = ﬁj{nJ-{é,,_<.,~}} .

Because the phase noise samples {¢,, } are 1.1.d. and stationary,
we have

1. m=mn
W = I {:3-f“‘"' } K {!’.‘ Fiton } = ¢dh* = |(T-"|2. m#En
G
where
b= E e}, &)

At this point, our problem has reduced to computing &

To proceed, we need to use the specific model of the prob-
ability density function (pdf) of ¢,,, which we denote p.(a,.).
We use a zero-mean Gaussian with standard deviation o

{_(:—d-f._JQW*_ (6
oy 2x

Strictly speaking, this is not possible: a valid pdf for a phase
measurement must be limited to the interval [0, 27). However, if
the standard deviation is small, then p,({,, } will approach zero
as ¢y, approaches £+, and the Gaussian is a useful model. In
practice, we are interested in standard deviations of only a few
degrees, so that £ corresponds to many standard deviations
out on the tail of the Gaussian distribution.

By definition, we have for m #£ n

& =E [} = f " e pe () debm

pa(dn) =

= [ ¢ py () i 0]
. &

where the approximation relies again on the variance of the
Gaussian being small, so that the pdf is effectively nonzero only

1070-9908/03817.00 © 2003 IEEE

A Slight Extension to *““Coherent Integration
Loss Due to White Gaussian Phase Noise”

Page 5 of 5

March 3, 2011



RICHARDS: COHERENT INTEGRATION LOSS DUE TO WHI'T

in a small region around ¢ = {. Substituting in the definition ot
the Gaussian pdfl, we oblain

& =

1 it (o, — (17202010 ) 1,
Pere 7 "ot el (8)
o

oy 2T

Integral number 3.323 2 in [3] is

-
- S o2 i
/ P PR (9)
Jos #

By identifying

|
p=—=lg=jiua=20, (10)
U\/E
we can pul (8) into the form ol (9) and conclude that
of 20" VT e 70 (1
_1_
(0»5)
and
o =" (12)
We can now return Lo ., which becomes
1, =1
Jr = r 3
Vo { “ mam (13)

Finally, the mean power of the coherently integraled measure-
ment with phase noise is

N NN
Elzp=A |3 a3 Y onar, (14)
n_1 n_lan—1
T

This is the desired result. Tt is casily computed given the phase
noise variance o2 and the weighting coefficients {«,, }.

‘The case where «,, = | for all » 15 of special interest: this
is the model for coherent integration of samples for detection,
for example, It is common to compule the integration loss /. in
this case, defined as the ratio of the power when phase noise 1s
present to the power when it is not
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Fig. I.  Comparison of “exact” formula for the change in integrated power due
to phase noise {16) 1o the simpliticd approximation (17} as a function of the
number of samples integrated N g = 57,

With a, = 1, (13) simplifies to

N4e NN T+e (N —1)
L= [ e } B N - (19
1T NV is large, we can further simplify (16) to
Leze o, N L an

Finally, this approximation is especially simple when expressed
in decibels

L= 10kogy, [«; “"] — —43MIeT B, N el (8

The basic result of (14) can be used for calculations other than
integration loss. For example, a two-pulsc radar clutter canceller
can be modeled by choosing ¥V = 2, 4; = +1,and up = —L.
The power computed using (14} is then the limit on clutter at-
tenuation due Lo phase noise. Approximating cxp(—a2) by the
first two terms of its power series gives the classical approxima-
tions for clutter attenuation found in [3] and [4] (after adjusting
for their use of real. rather than complex, signals). Our result is
applicable over a Targer range of phasc variance,

Fig. 1 shows the difference in the coherent integration loss
formula (16) for I and the large-V approximation of (17} as a
functien of the number of samples integrated 2V for the specific
example of ¢ = 5°. T'he difference in the predicted mean loss
is less than 0.01 dB for & > 1 samples. As the phase variance
rises, the value of N for which the error in the approximation
is less than 0.01 dB also rises, reaching N = 11 foro = 10°

L :L}_ and ¥ = 55 for ¢ = 20°. However, these are quite large values
42 2\: “ ol phase error; the approximation of (17) or {18) 1s very good
= lor a small number of samples integrated and reasonably small
¥ 5 L NN values of phase error.
Siaal 77 3003 aual,
_”=] ”7:?1;";1':' dB as) L. VALIDATION BY SIMULATION
xoF ' ’ A simple MATLAB Maonte Carlo simulation has been imple-
,;1 " mented to validate the estimated loss of (16). A sequence of unit
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il is well under 0.001 JB,

amplirtude (1 = 1) complex phasors with a zero-mean (Gaussian
phase is generated. T'he samples are then numerically integrated
(summed). The magnitude-squared of the sum is computed, and
then normalized by the power without phase noise and con-
verted to decibels. Fig. 2 compares this Monte Carlo estimate

IEEE SIGNAL PROCESSING LETIERS, VOL. 10, NO. 7, JULY 2003

of L against the analytically predicted value given in (16} for
N = 10 samples integrated and 1000 Monle Carlo trials aver-
aged. We see that the analytical prediction is an excellent match
to the simulated data. The difference between the two curves in
decibels is plotted against the right ordinate and is well under
0.001 dB for this casc. For larger N, the variance of the inte-
gration loss is less and the curves are an even closer fit. The
error between simulated and predicted loss for N = 10 does
not exceed 0.01 dB until the phase noise variance is about 207,
alarge value. AL this latler level ol phase variance, the *3-sigma”
points are £60”, and the approximations to the phase pdf and
the change of integration limits from £w to £o¢, which both
relied on a “narrow Gaussian™ pdf, are becoming invalid.
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