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1 Goal 
In [1], the integration loss L in computing the coherent sum of N samples xn with 

weights an is considered. The coherent sum w is 
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When the samples are contaminated by stationary white Gaussian phase noise of variance 
σ 2, L is given by the formula 
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Reference [1] is included in its entirety in Section 5 of this note, and in the remainder we 
refer to the derivations and equations there to avoid repeating them. 

As noted in [1], the Gaussian probability density function (PDF) assumed for the 
phase noise is not physically possible, since it is not confined to the interval [− π,π). 
While the Gaussian PDF is still a very good approximation for small σ 2, in this note we 
add a small extension to that analysis by re-deriving the result for a more realistic phase 
noise PDF. 

2 The Phase Noise PDF 
The PDF of interest is the “Tikhonov distribution” given by Van Trees [2]. In the 

notation of [1], this is 
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This PDF evidently describes the statistics of the steady state phase estimate of a first 
order phase locked loop tracking a sinusoid in additive white Gaussian noise. For our 
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purposes, it provides a family of phase PDFs that vary from uniform (α = 0) to, in the 
limit, a nonrandom phase of zero as α → ∞, but is always confined to [−π,π) and thus is 
always a strictly valid PDF for phase. Thus, we can consider the effect of varying degrees 
of phase noise, previously achieved by varying the variance in the Gaussian PDF model 
of [1], by instead varying α in the Tikhonov PDF. Figure 1 illustrates the Tikhonov PDF 
for several different values of the parameter α. 

 

 

Figure 1. The Tikhonov PDF for phase. 

 

3 Coherent Integration Loss 
Following the process in [1], we need to compute the quantity Φ, which is 
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The integral portion of Eq. (4) can be put into a more convenient form as follows: 
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The last step follows from one integral form of the definition of the modified Bessel 
function of the first kind [3]. Thus, 
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It then follows from the argument in [1] that the coherent integration loss is 
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and, for the case where all the an ≡ 1, 
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Finally, when N is large, 
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Figure 2 illustrates the loss for the case where all an = 1, i.e., Eq. (8), as a function 
of the number of samples integrated and the PDF spread parameter α.  For large α (phase 
nearly constant), the loss approaches L = 1 (0 dB), as would be expected.  As the phase 
PDF becomes more spread (α approaching zero), indicating a greater degree of phase 
noise, the loss increases, becoming relatively severe for α < 5. 
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Figure 2. Loss as a function of α and N. Left: linear scale.  Right: decibel scale. 

 
The random phase case corresponds to α = 0. For this case, Eq. (8) shows that the 

loss becomes, for an = 1, L = 1/N. This example shows that when the phase of the 
summed samples are all random, they add on a “power basis” instead of a voltage basis.  
That is, the power of the sum is N times the power of a single sample, instead of N2, a 
reduction in gain by the factor N.  This, of course, is exactly the way random noise 
samples behave. 
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5 Original Paper 
A copy of reference [1] is included in the next three pages.1

  
 

                                                 
1 A trivial correction concerns Eq. (15) in [1]. That expression for L is not in decibels, so the “dB” at the 
end of the equation should be deleted. 
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