
M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

1 | P a g e

Binary Integration Gain

Mark A. Richards

September 2016

1 Acknowledgement

Thanks to Gabriel Beltrão for bringing this issue to my attention, and for providing an independent check

of the calculations.

2 Introduction

Binary integration (BI), also called M-of-N processing or integration, is a technique for combining

multiple threshold detection test outcomes to form a single, final detection test outcome that achieves

specified probabilities of detection and false alarm, PD and PFA, with a lower single-sample signal-to-

noise ratio (SNR) than would be required for a single threshold test based on a single measurement.

Alternatively, for a given SNR, binary integration can achieve lower PFA and/or higher PD than a

detection test using a single measurement. A description of the basic technique is given in section 6.4 of

[1] and will not be repeated here.

A shortcoming of the discussion in [1] is that it only computes the effect of the processing on the post-BI

probabilities given a single-trial probability, and then suggests that the best choice of M for a given N is

the one that maximizes the range of pre-BI detection probabilities for which the post-BI detection

probability is increased. (Any reasonable pre-BI false alarm probability will be decreased for any choice

of M except M = 1.) A more useful basis for evaluation would be to compute a binary integration gain

GBI, i.e. the factor by which the required single-measurement SNR needed to achieve a given PD and PFA

is decreased when using BI, vs. that required when detection is based on only a single measurement.

This is in exact analogy to the idea of both coherent and noncoherent integration. Accordingly, the goal

of this memo is to develop a simple numerical procedure for evaluating GBI for any M and N and

compare the result to the corresponding noncoherent and coherent integration gains.

In the discussion that follows, the target is always assumed to be nonfluctuating. The Swerling target

fluctuations case is commented on briefly in Section 5.3.

3 Procedure for Computing Binary Integration Gain

Let PD and PFA be the desired final probabilities of detection and false alarm, whether one is using a

single threshold test, or using binary integration. If using BI, let the number of individual threshold tests

to be combined be N, and let the decision rule be that a detection is declared if and only if at least M or

more of the N individual threshold tests indicate a detection, where M can be between 1 and N. The

detections need not be continguous. For example, a 3-of-8 BI rule (M = 3, N = 8) would conduct eight

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

2 | P a g e

separate threshold tests, and would only declare a detection if the threshold were crossed on any 3 or

more of those tests. When using the BI procedure, let the probabilities of detection and false alarm for a

single trial be PD1 and PFA1, and note that the desired probabilities after BI are just PD and PFA . Let the

reference SNR required to achieve a specified PD and PFA using a single measurement be , and the SNR

required to achieve a specified PD1 and PFA1 on a single measurement be 1. We restrict ourselves to the

following additional conditions, mainly because they comprise the easiest form of the problem:

 Each of the N BI threshold tests is statistically independent of the others.

 The SNR of the data in each of those N tests is identical. This effectively assumes a

nonfluctuating target and no significant changes in the data collection scenario over the N

measurements, e.g. no changes in antenna gain due to scanning, no range changes, etc.

 The interference is circular white Gaussian noise.

 A square law detector is used. This is necessary because we use Shnidman’s SNR equation

(Section 6.3.5 in [1]) to estimate the required SNRs, and it assumes a square law detector.

Albersheim’s SNR equation could also be used [1]; doing so effectively assumes a linear

detector. There is little difference in the outcomes.

The first two conditions in this list mean that when using BI, the “cumulative” probability of detection PD

is related to the single-trial detection probability PD1 according to Eq. (6.116) of [1], repeated here in the

notation of this memo:

  1 11
N

N rr
D D D

r M

N
P P P

r





 
  

 
 (1)

An identical equation relates PFA and PFA1. A numerical procedure for computing the binary integration

gain is straightforward:

1. Given desired values of M, N, PD, and PFA:

a. Find the reference SNR  required to achieve PD and PFA using a single measurement

and threshold test. This is easily done to a good approximation (0.5 dB or better in most

cases) in closed form using Shnidman’s SNR equation. Alternatively, a numerical search

can be performed using the more exact Marcum’s Q function, but that seems overkill

for this analysis.

b. Solve Eq. (1) for the value of PD1 required to achieve the specified PD. This must be done

numerically.1

c. Repeat (b) to find the value of PFA1 required to achieve the specified PFA.

d. Find the SNR 1 required to achieve the single-trial probabilities PFA1 and PD1 on a single

measurement and threshold test.

e. The binary integration gain GBI is the ratio /1. Convert to decibels if desired.

2. Repeat for various values of M, N, PD, and PFA as needed.

1 In MATLAB®, the solution can be accomplished very efficiently by appropriate use of the fzero function.

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

3 | P a g e

4 Example

Figure 1 illustrates the binary integration gain for a square-law detector, PFA = 10−6, N = 8, and all

choices of M (1 through 8). Qualitatively similar results are obtained for other PFA values from 10−2 to

10−8, and for N from 3 through 7. Following is an example of computing one point on this chart, namely

the case of 3-of-8 processing with a PFA of 10−6 and PD of 0.7:

1. Shnidman’s SNR equation gives the SNR required to achieve this performance with a single

measurement as  = 15.97 on a linear scale, which is 12.03 dB.

2. The single-trial probability PFA1 required to achieve PFA = 10−6 with 3-of-8 binary integration is

found by a numerical search to be 0.0026.

3. Similarly, the single-trial probability PD1 required to achieve PD = 0.7 with 3-of-8 binary

integration is found by a numerical search to be 0.4075.

4. Shnidman’s SNR equation gives the SNR required to achieve PFA1 = 0.0026 and PD1 = 0.4075 with

a single measurement to be 1 = 4.78 = 6.8 dB.

5. The binary integration gain for this case is GBI = /1 = 3.34 = 5.24 dB. Within roundoff errors,

this of course is also equal to the difference of the two SNRs in steps 1 and 4 in dB, i.e.

12.03 – 6.8 = 5.23 dB.

The data point in Figure 1 corresponding to this example is shown by the red circle.

Figure 1. Binary integration gain GBI due to binary integration for N = 8 and all possible values of M. In
all cases, PFA = 10−6. The circled data point corresponds to the numerical example above. Also shown

are the noncoherent gain Gnc and the coherent integration gain Gc for N = 8.

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

4 | P a g e

5 Discussion

5.1 Best Choice of M
An obvious question is which value of M is best, in the sense of providing the largest integration gain.

From the data shown in Figure 1, it would appear that the optimum choice of M for N = 8 and PFA = 10−6

is Mopt = 5 or 6. The choice of M is not very critical; in this example, the values 3, 4, and 7 also provide

gains within 1 dB or less of the maximum. The values also do not vary with PFA ranging from 10−2 to 10−8.

Similar broad maxima with respect to M and insensitivity to PFA is observed for other values of N

between 3 and 8.

In [3], Shnidman considers binary integration gain. He defines the optimum value of M to be that which

maximizes PD for a given N, PFA, SNR , and target fluctuation model. This is equivalent to our definition

of the optimum M as the one that maximizes integration gain, since that corresponds to minimizing the

required  for a given PD, PFA, and N. He observes a similar broad maximum in the value of Mopt over all

of the target models considered as well as a much broader range of N (up to 1000) than considered

here. He also proposes an empirical estimate of Mopt for the nonfluctuating target:

    0.02 0.8 0.810 0.955 (nonfluctuating target)optM N N round round (2)

The round(∙) function was added here to give an integer result, as required in practice. This estimate

is stated to be valid for N from 5 to 700. Table 1 shows that the value of Mopt predicted by Eqn. (2)

usually matches those observed from calculations like those leading to Figure 1.

Table 1. Observed and predicted values of Mopt for a nonfluctuating target with PFA = 10−6.

 N = 3 4 5 6 7 8

Observed Mopt 2 3 4 4 5 5

Eqn. (2) 2 3 3 4 5 5

5.2 Comparison to Coherent and Noncoherent Integration
Also shown in Figure 1 are the curves for coherent integration gain Gc and noncoherent integration gain

Gnc using N = 8 samples. The coherent integration gain is just a factor of N. The noncoherent integration

gain is computed using Shnidman’s SNR equation. Figure 2 illustrates the amount by which the binary

integration gain (using the appropriate Mopt for each N) is reduced compared to the noncoherent

integration gain that could be achieved for the same value of N and a nonfluctuating target, i.e.

Gnc – GBI. For the range of N shown, the loss in integration gain due to the use of binary integration is on

the order of 1 ± 0.15 dB. In [3], it is shown that in fact the loss is less than 1.5 dB for a much wider range

of N than considered here.

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

5 | P a g e

Figure 2. Reduction in integration gain (“loss”) when using binary integration with the optimum value
of M, as compared to using noncoherent integration for a nonfluctuating target and PFA = 10−6.

5.3 Fluctuating Targets
In [3], Shnidman also addresses the value of Mopt and the reduction in integration gain relative to

noncoherent integration for the four Swerling target fluctuation models. The estimated value of Mopt for

other target models follows the same functional form as Eqn. (2) but with different exponent values. It is

also shown that the loss Gnc – GBI is still less than 1.5 dB for a wide range of N and all of the Swerling

model targets. See [3] for details regarding these issues.

5.4 Data Usage Priorities
The main advantages of binary integration are simplicity and robustness. It achieves an integration gain

within 1 to 1.5 dB of noncoherent integration with a somewhat simpler implementation. It also, like

noncoherent integration, is more robust than coherent integration in that it does not depend on

maintaining coherence of the target echo components, which can be difficult. However, the

noncoherent integration gain Gnc exceeds the best-choice binary integration gain GBI in every case

examined, and the coherent integration gain Gc in turn exceeds Gnc.2 Thus, given multiple

2 There are some cases with Swerling 2 and 4 targets where the noncoherent integration gain actually exceeds the
coherent integration gain. However, even in these cases the SNR required to achieve a given detection

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

6 | P a g e

measurements of a nonfluctuating target in noise, and assuming the goal is to detect the target’s

presence with the minimum required SNR, coherent integration should be performed first to the

maximum extent possible. If coherent integration is not feasible or if it is limited to fewer than N

samples at a time (perhaps due to radar-target motion-induced phase errors, transceiver phase

instabilities, etc.), then there will still be N N  samples available to be combined. The results above

show that these samples should be noncoherently integrated if possible. Finally, if noncoherent

integration of the remaining samples is not feasible, binary integration can be applied with only a minor

additional loss.

It is worth noting that binary integration is often combined with multiple pulse repetition frequency

(PRF) data acquisition to achieve more than just detection. In particular, collecting N coherent

processing intervals (CPIs) of data in a pulse Doppler radar, each at a different PRF; applying appropriate

threshold detection processing to each CPI; and then applying binary integration across the CPIs in each

range-Doppler cell not only achieves an integration gain for detection but can also be used to reduce or

avoid range-Doppler blind zones and resolve range and Doppler ambiguities. See [1] for an introduction

to this style of processing.

6 References

[1] M. A. Richards, Fundamentals of Radar Signal Processing, second edition. McGraw-Hill, 2014.

[2] M. A. Richards, “Notes on Noncoherent Integration Gain”, technical memorandum, July 17,

2014. Available at www.radarsp.com.

[3] D. A. Shnidman, “Binary Integration for Swerling Target Fluctuations”, IEEE Trans. Aerospace and

Electronic Systems, vol. 34, no. 3, pp. 1043-1053, July 1998.

7 MATLAB® Code

Versions of the following code were used to generate the figures in this memo.

%

% binary_int_gain_nonfluc

%

% Computes the integration gain from using binary integration. A

% nonfluctuating target is assumed. Shnidman's equation is used to

% estimate various SNRs needed, so the result is approximate but probably

% pretty good.

%

% Reference: Section 6.4 of Richards, "Fundamentals of Radar Signal

% Processing".

%

% Mark A. Richards, September 2016.

clear all

close all

% Specify N for the N-of-N (binary integration) scheme. We compute

performance is less with coherent integration than with noncoherent integration. A discussion of this phenomenon
can be found in [2].

http://www.radarsp.com/

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

7 | P a g e

% results for all choices of M from M=1 (1-of-N) to M=N (N-of-N). We'll

% also loop over multiple values of N.

NN = 3:8';

NNlen = length(NN);

% Specify Pfa and Pd ranges

PFA = 10.^(-[2:8]');

PFAlen = length(PFA);

PD = [0.3:0.05:0.9,0.92,0.94,0.95];

% PD = [0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95]';

PDlen = length(PD);

% Let's loop over PFA, then PD, then N, then M

% matrix to hold the results

gain_BI_dB = zeros(PFAlen,PDlen,NNlen,max(NN));

gain_noncoh_dB = zeros(PFAlen,PDlen,NNlen);

gain_coh_dB = zeros(PFAlen,PDlen,NNlen);

for PFAn = 1:PFAlen

 Pfa = PFA(PFAn);

 for PDn = 1:PDlen

 Pd = PD(PDn);

 % Compute the SNR required to achieve this Pd and Pfa with a single

 % test, i.e. not using M-of-N processing.

 SNR_1 = shnidman(1,Pd,Pfa,0);

 SNR_1dB = 10*log10(SNR_1);

 for Nn = 1:NNlen

 N = NN(Nn);

 % Compute the SNR for achieving this Pd and Pfa using N samples

 % and noncoherent integration; use that to compute noncoherent

 % integration gain for this case

 SNR_N = shnidman(N,Pd,Pfa,0);

 SNR_NdB = 10*log10(SNR_N);

 gain_noncoh_dB(PFAn,PDn,Nn) = SNR_1dB - SNR_NdB;

 gain_coh_dB(PFAn,PDn,Nn) = 10*log10(N);

 for M = 1:N

 M;

 % find required single-trial Pfa1 such that the cumulative

 % false alarm probability is the desired value Pfa. This

 % requires a numerical search, but we can make an excellent

 % initial guess. See reference.

 k = factorial(N)/factorial(N-M)/factorial(M);

 p0 = (Pfa/k)^(1/M);

 fun = @(p) (MofN_probability(p,M,N) - Pfa);

 Pfa1 = fzero(fun,p0);

 % Repeat for detection probability. The initial guess is

 % nowhere near as accurate in this case, but still seems to

 % work OK.

 fun = @(p) (MofN_probability(p,M,N) - Pd);

 Pd1 = fzero(fun,[0 1]);

 % Now use Shnidman's equation to get the SNR required to

 % achieve these single-trial probabilities. This is the SNR

 % needed to meet the overall PD and PFA goal with the

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

8 | P a g e

 % M-of-N method.

 SNR_MN = shnidman(1,Pd1,Pfa1,0);

 SNR_MNdB = 10*log10(SNR_MN);

 % Compute the integration gain due to the M-of-N scheme

 gain_BI_dB(PFAn,PDn,Nn,M) = SNR_1dB - SNR_MNdB;

 % if (M==3) & (N==8) & (Pd == 0.7) & (Pfa == 1e-6)

 % M

 % N

 % Pd

 % Pfa

 % Pfa1

 % Pd1

 % SNR_MN

 % SNR_MNdB

 % SNR_1dB - SNR_MNdB

 % end

 end % of loop over M

 end % of loop over Nn

 end % of loop over PDn

end % of loop over PFAn

% All of the results are in the gain(:,:,:,:) matrix. Now some plots.

% Gain vs. Pd for fixed Pfa and different M-N combinations

% This parameter chooses which Pfa to use. PFAn = 1 for 1e-2, PFAn = 2 for

% 1e-3, ,,, , PFAn = 7 for 1e-8

% PFAn = 7; % Pfa = 1e-8

% PFAn = 6; % Pfa = 1e-7

PFAn = 5; % Pfa = 1e-6

% PFAn = 4; % Pfa = 1e-5

% PFAn = 3; % Pfa = 1e-4

% PFAn = 2; % Pfa = 1e-3

% PFAn = 1; % Pfa = 1e-2

% plot the M-of-3 cases

gain_coh_dB(:,:,1) = 10*log10(3);

figure

x = PD;

y = [gain_BI_dB(PFAn,:,1,1); % Pfa = 1e-6, all Pd values, N = 3, M = 1

 gain_BI_dB(PFAn,:,1,2); % Pfa = 1e-6, all Pd values, N = 3, M = 2

 gain_BI_dB(PFAn,:,1,3); % Pfa = 1e-6, all Pd values, N = 3, M = 3

 gain_noncoh_dB(PFAn,:,1); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 3

 gain_coh_dB(PFAn,:,1)]; % coherent gain, N = 3

plot(x,y')

xlim([0.3 1]);

ylim([0,10]);

grid

xlabel('Pd')

ylabel('Gain (dB)')

title(['M-of-3, Pfa = ',num2str(PFA(PFAn))])

legend('1 of 3','2 of 3','3 of 3','Noncoherent','Coherent')

% plot the M-of-4 cases

gain_coh_dB(:,:,2) = 10*log10(4);

figure

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

9 | P a g e

x = PD;

y = [gain_BI_dB(PFAn,:,2,1); % Pfa = 1e-6, all Pd values, N = 4, M = 1

 gain_BI_dB(PFAn,:,2,2); % Pfa = 1e-6, all Pd values, N = 4, M = 2

 gain_BI_dB(PFAn,:,2,3); % Pfa = 1e-6, all Pd values, N = 4, M = 3

 gain_BI_dB(PFAn,:,2,4); % Pfa = 1e-6, all Pd values, N = 4, M = 4

 gain_noncoh_dB(PFAn,:,2); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 4

 gain_coh_dB(PFAn,:,2)]; % coherent gain, N = 4

plot(x,y')

xlim([0.3 1]);

ylim([0,10]);

grid

xlabel('Pd')

ylabel('Gain (dB)')

title(['M-of-4, Pfa = ',num2str(PFA(PFAn))])

legend('1 of 4','2 of 4','3 of 4','4 of 4','Noncoherent','Coherent')

% plot the M-of-5 cases

gain_coh_dB(:,:,3) = 10*log10(5);

figure

x = PD;

y = [gain_BI_dB(PFAn,:,3,1); % Pfa = 1e-6, all Pd values, N = 5, M = 1

 gain_BI_dB(PFAn,:,3,2); % Pfa = 1e-6, all Pd values, N = 5, M = 2

 gain_BI_dB(PFAn,:,3,3); % Pfa = 1e-6, all Pd values, N = 5, M = 3

 gain_BI_dB(PFAn,:,3,4); % Pfa = 1e-6, all Pd values, N = 5, M = 4

 gain_BI_dB(PFAn,:,3,5); % Pfa = 1e-6, all Pd values, N = 5, M = 5

 gain_noncoh_dB(PFAn,:,3); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 5

 gain_coh_dB(PFAn,:,3)]; % coherent gain, N = 4

plot(x,y')

xlim([0.3 1]);

ylim([0,10]);

grid

xlabel('Pd')

ylabel('Gain (dB)')

title(['M-of-5, Pfa = ',num2str(PFA(PFAn))])

legend('1 of 5','2 of 5','3 of 5','4 of 5','5 of 5','Noncoherent','Coherent')

% plot the M-of-6 cases

gain_coh_dB(:,:,4) = 10*log10(6);

figure

x = PD;

y = [gain_BI_dB(PFAn,:,4,1); % Pfa = 1e-6, all Pd values, N = 6, M = 1

 gain_BI_dB(PFAn,:,4,2); % Pfa = 1e-6, all Pd values, N = 6, M = 2

 gain_BI_dB(PFAn,:,4,3); % Pfa = 1e-6, all Pd values, N = 6, M = 3

 gain_BI_dB(PFAn,:,4,4); % Pfa = 1e-6, all Pd values, N = 6, M = 4

 gain_BI_dB(PFAn,:,4,5); % Pfa = 1e-6, all Pd values, N = 6, M = 5

 gain_BI_dB(PFAn,:,4,6); % Pfa = 1e-6, all Pd values, N = 6, M = 6

 gain_noncoh_dB(PFAn,:,4); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 6

 gain_coh_dB(PFAn,:,4)]; % coherent gain, N = 6

plot(x,y')

xlim([0.3 1]);

ylim([0,10]);

grid

xlabel('Pd')

ylabel('Gain (dB)')

title(['M-of-6, Pfa = ',num2str(PFA(PFAn))])

legend('1 of 6','2 of 6','3 of 6','4 of 6','5 of 6','6 of 6', ...

 'Noncoherent','Coherent')

% plot the M-of-7 cases

gain_coh_dB(:,:,5) = 10*log10(7);

figure

x = PD;

y = [gain_BI_dB(PFAn,:,5,1); % Pfa = 1e-6, all Pd values, N = 7, M = 1

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

10 | P a g e

 gain_BI_dB(PFAn,:,5,2); % Pfa = 1e-6, all Pd values, N = 7, M = 2

 gain_BI_dB(PFAn,:,5,3); % Pfa = 1e-6, all Pd values, N = 7, M = 3

 gain_BI_dB(PFAn,:,5,4); % Pfa = 1e-6, all Pd values, N = 7, M = 4

 gain_BI_dB(PFAn,:,5,5); % Pfa = 1e-6, all Pd values, N = 7, M = 5

 gain_BI_dB(PFAn,:,5,6); % Pfa = 1e-6, all Pd values, N = 7, M = 6

 gain_BI_dB(PFAn,:,5,7); % Pfa = 1e-6, all Pd values, N = 7, M = 7

 gain_noncoh_dB(PFAn,:,5); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 7

 gain_coh_dB(PFAn,:,5)]; % coherent gain, N = 7

plot(x,y')

xlim([0.3 1]);

ylim([0,10]);

grid

xlabel('Pd')

ylabel('Gain (dB)')

title(['M-of-7, Pfa = ',num2str(PFA(PFAn))])

legend('1 of 7','2 of 7','3 of 7','4 of 7','5 of 7','6 of 7','7 of 7', ...

 'Noncoherent','Coherent')

% plot the M-of-8 cases

gain_coh_dB(:,:,6) = 10*log10(8);

figure

x = PD;

y = [gain_BI_dB(PFAn,:,6,1); % Pfa = 1e-6, all Pd values, N = 8, M = 1

 gain_BI_dB(PFAn,:,6,2); % Pfa = 1e-6, all Pd values, N = 8, M = 2

 gain_BI_dB(PFAn,:,6,3); % Pfa = 1e-6, all Pd values, N = 8, M = 3

 gain_BI_dB(PFAn,:,6,4); % Pfa = 1e-6, all Pd values, N = 8, M = 4

 gain_BI_dB(PFAn,:,6,5); % Pfa = 1e-6, all Pd values, N = 8, M = 5

 gain_BI_dB(PFAn,:,6,6); % Pfa = 1e-6, all Pd values, N = 8, M = 6

 gain_BI_dB(PFAn,:,6,7); % Pfa = 1e-6, all Pd values, N = 8, M = 7

 gain_BI_dB(PFAn,:,6,8); % Pfa = 1e-6, all Pd values, N = 8, M = 8

 gain_noncoh_dB(PFAn,:,6); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 8

 gain_coh_dB(PFAn,:,6)]; % coherent gain, N = 8

plot(x,y')

xlim([0.3 1]);

ylim([0,10]);

grid

xlabel('Pd')

ylabel('Gain (dB)')

title(['M-of-8, Pfa = ',num2str(PFA(PFAn))])

legend('1 of 8','2 of 8','3 of 8','4 of 8','5 of 8','6 of 8','7 of 8', ...

 '8 of 8','Noncoherent','Coherent')

% Now let's use our data to see what the integratino loss is compared to

% noncoherent. Generate a plot of the difference in integration gain

% between the noncoherent case and the best binary case, as a function of

% Pd, for a fixed Pfa.

loss_NCmBI_dB = zeros(PDlen,NNlen);

for Nn = 1:NNlen

 Mopt = round((10^-0.02)*NN(Nn)^0.8)

 for PDn = 1:PDlen

 % loss_NCmBI_dB(PDn,Nn) = gain_noncoh_dB(PFAn,PDn,Nn) -

max(gain_BI_dB(PFAn,PDn,Nn,:));

 loss_NCmBI_dB(PDn,Nn) = gain_noncoh_dB(PFAn,PDn,Nn) -

gain_BI_dB(PFAn,PDn,Nn,Mopt);

 end

end

figure

plot(PD,loss_NCmBI_dB)

grid

xlabel('Pd')

M. A. Richards, “Binary Integration Gain” Nov. 28, 2017

11 | P a g e

ylabel('Loss Relative to Noncoherent Integration (dB)')

title(['Optimum M, Pfa = ',num2str(PFA(PFAn))])

legend('3=N','4','5','6','7','8','Location','Best')

