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2 Introduction 

Binary integration (BI), also called M-of-N processing or integration, is a technique for combining 

multiple threshold detection test outcomes to form a single, final detection test outcome that achieves 

specified probabilities of detection and false alarm, PD and PFA, with a lower single-sample signal-to-

noise ratio (SNR) than would be required for a single threshold test based on a single measurement. 

Alternatively, for a given SNR, binary integration can achieve lower PFA and/or higher PD than a 

detection test using a single measurement. A description of the basic technique is given in section 6.4 of 

[1] and will not be repeated here. 

A shortcoming of the discussion in [1] is that it only computes the effect of the processing on the post-BI 

probabilities given a single-trial probability, and then suggests that the best choice of M for a given N is 

the one that maximizes the range of pre-BI detection probabilities for which the post-BI detection 

probability is increased. (Any reasonable pre-BI false alarm probability will be decreased for any choice 

of M except M = 1.) A more useful basis for evaluation would be to compute a binary integration gain 

GBI, i.e. the factor by which the required single-measurement SNR needed to achieve a given PD and PFA 

is decreased when using BI, vs. that required when detection is based on only a single measurement. 

This is in exact analogy to the idea of both coherent and noncoherent integration. Accordingly, the goal 

of this memo is to develop a simple numerical procedure for evaluating GBI for any M and N and 

compare the result to the corresponding noncoherent and coherent integration gains. 

In the discussion that follows, the target is always assumed to be nonfluctuating. The Swerling target 

fluctuations case is commented on briefly in Section 5.3. 

3 Procedure for Computing Binary Integration Gain 

Let PD and PFA be the desired final probabilities of detection and false alarm, whether one is using a 

single threshold test, or using binary integration. If using BI, let the number of individual threshold tests 

to be combined be N, and let the decision rule be that a detection is declared if and only if at least M or 

more of the N individual threshold tests indicate a detection, where M can be between 1 and N. The 

detections need not be continguous. For example, a 3-of-8 BI rule (M = 3, N = 8) would conduct eight 



M. A. Richards, “Binary Integration Gain” Nov. 28, 2017 

 

2 | P a g e  
 

separate threshold tests, and would only declare a detection if the threshold were crossed on any 3 or 

more of those tests. When using the BI procedure, let the probabilities of detection and false alarm for a 

single trial be PD1 and PFA1, and note that the desired probabilities after BI are just PD and PFA . Let the 

reference SNR required to achieve a specified PD and PFA using a single measurement be , and the SNR 

required to achieve a specified PD1 and PFA1 on a single measurement be 1. We restrict ourselves to the 

following additional conditions, mainly because they comprise the easiest form of the problem: 

 Each of the N BI threshold tests is statistically independent of the others. 

 The SNR of the data in each of those N tests is identical. This effectively assumes a 

nonfluctuating target and no significant changes in the data collection scenario over the N 

measurements, e.g. no changes in antenna gain due to scanning, no range changes, etc. 

 The interference is circular white Gaussian noise. 

 A square law detector is used. This is necessary because we use Shnidman’s SNR equation 

(Section 6.3.5 in [1]) to estimate the required SNRs, and it assumes a square law detector. 

Albersheim’s SNR equation could also be used [1]; doing so effectively assumes a linear 

detector. There is little difference in the outcomes. 

The first two conditions in this list mean that when using BI, the “cumulative” probability of detection PD 

is related to the single-trial detection probability PD1 according to Eq. (6.116) of [1], repeated here in the 

notation of this memo: 
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An identical equation relates PFA and PFA1. A numerical procedure for computing the binary integration 

gain is straightforward: 

1. Given desired values of M, N, PD, and PFA: 

a. Find the reference SNR  required to achieve PD and PFA using a single measurement 

and threshold test. This is easily done to a good approximation (0.5 dB or better in most 

cases) in closed form using Shnidman’s SNR equation. Alternatively, a numerical search 

can be performed using the more exact Marcum’s Q function, but that seems overkill 

for this analysis. 

b. Solve Eq. (1) for the value of PD1 required to achieve the specified PD. This must be done 

numerically.1 

c. Repeat (b) to find the value of PFA1 required to achieve the specified PFA. 

d. Find the SNR 1 required to achieve the single-trial probabilities PFA1 and PD1 on a single 

measurement and threshold test. 

e. The binary integration gain GBI is the ratio /1. Convert to decibels if desired. 

2. Repeat for various values of M, N, PD, and PFA as needed. 

                                                             
1 In MATLAB®, the solution can be accomplished very efficiently by appropriate use of the fzero function. 
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4 Example 

Figure 1 illustrates the binary integration gain for a square-law detector, PFA = 10−6, N = 8, and all 

choices of M (1 through 8). Qualitatively similar results are obtained for other PFA values from 10−2 to 

10−8, and for N from 3 through 7. Following is an example of computing one point on this chart, namely 

the case of 3-of-8 processing with a PFA of 10−6 and PD of 0.7: 

1. Shnidman’s SNR equation gives the SNR required to achieve this performance with a single 

measurement as  = 15.97 on a linear scale, which is 12.03 dB. 

2. The single-trial probability PFA1 required to achieve PFA = 10−6 with 3-of-8 binary integration is 

found by a numerical search to be 0.0026. 

3. Similarly, the single-trial probability PD1 required to achieve PD = 0.7 with 3-of-8 binary 

integration is found by a numerical search to be 0.4075. 

4. Shnidman’s SNR equation gives the SNR required to achieve PFA1 = 0.0026 and PD1 = 0.4075 with 

a single measurement to be 1 = 4.78 = 6.8 dB. 

5. The binary integration gain for this case is GBI = /1 = 3.34 = 5.24 dB. Within roundoff errors, 

this of course is also equal to the difference of the two SNRs in steps 1 and 4 in dB, i.e. 

12.03 – 6.8 = 5.23 dB. 

The data point in Figure 1 corresponding to this example is shown by the red circle. 

 

Figure 1. Binary integration gain GBI due to binary integration for N = 8 and all possible values of M. In 
all cases, PFA = 10−6. The circled data point corresponds to the numerical example above. Also shown 

are the noncoherent gain Gnc and the coherent integration gain Gc for N = 8. 
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5 Discussion 

5.1 Best Choice of M 
An obvious question is which value of M is best, in the sense of providing the largest integration gain. 

From the data shown in Figure 1, it would appear that the optimum choice of M for N = 8 and PFA = 10−6 

is Mopt = 5 or 6. The choice of M is not very critical; in this example, the values 3, 4, and 7 also provide 

gains within 1 dB or less of the maximum. The values also do not vary with PFA ranging from 10−2 to 10−8. 

Similar broad maxima with respect to M and insensitivity to PFA is observed for other values of N 

between 3 and 8. 

In [3], Shnidman considers binary integration gain. He defines the optimum value of M to be that which 

maximizes PD for a given N, PFA, SNR , and target fluctuation model. This is equivalent to our definition 

of the optimum M as the one that maximizes integration gain, since that corresponds to minimizing the 

required  for a given PD, PFA, and N. He observes a similar broad maximum in the value of Mopt over all 

of the target models considered as well as a much broader range of N (up to 1000) than considered 

here. He also proposes an empirical estimate of Mopt for the nonfluctuating target: 

    0.02 0.8 0.810 0.955   (nonfluctuating target)optM N N round round  (2) 

The round(∙) function was added here to give an integer result, as required in practice. This estimate 

is stated to be valid for N from 5 to 700. Table 1 shows that the value of Mopt predicted by Eqn. (2) 

usually matches those observed from calculations like those leading to Figure 1. 

 

Table 1. Observed and predicted values of Mopt for a nonfluctuating target with PFA = 10−6. 

 N = 3 4 5 6 7 8 

Observed Mopt 2 3 4 4 5 5 

Eqn. (2) 2 3 3 4 5 5 

 

5.2 Comparison to Coherent and Noncoherent Integration 
Also shown in Figure 1 are the curves for coherent integration gain Gc and noncoherent integration gain 

Gnc using N = 8 samples. The coherent integration gain is just a factor of N. The noncoherent integration 

gain is computed using Shnidman’s SNR equation. Figure 2 illustrates the amount by which the binary 

integration gain (using the appropriate Mopt for each N) is reduced compared to the noncoherent 

integration gain that could be achieved for the same value of N and a nonfluctuating target, i.e. 

Gnc – GBI. For the range of N shown, the loss in integration gain due to the use of binary integration is on 

the order of 1 ± 0.15 dB. In [3], it is shown that in fact the loss is less than 1.5 dB for a much wider range 

of N than considered here. 
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Figure 2. Reduction in integration gain (“loss”) when using binary integration with the optimum value 
of M, as compared to using noncoherent integration for a nonfluctuating target and PFA = 10−6. 

 

5.3 Fluctuating Targets 
In [3], Shnidman also addresses the value of Mopt and the reduction in integration gain relative to 

noncoherent integration for the four Swerling target fluctuation models. The estimated value of Mopt for 

other target models follows the same functional form as Eqn. (2) but with different exponent values. It is 

also shown that the loss Gnc – GBI is still less than 1.5 dB for a wide range of N and all of the Swerling 

model targets. See [3] for details regarding these issues. 

5.4 Data Usage Priorities 
The main advantages of binary integration are simplicity and robustness. It achieves an integration gain 

within 1 to 1.5 dB of noncoherent integration with a somewhat simpler implementation. It also, like 

noncoherent integration, is more robust than coherent integration in that it does not depend on 

maintaining coherence of the target echo components, which can be difficult. However, the 

noncoherent integration gain Gnc exceeds the best-choice binary integration gain GBI in every case 

examined, and the coherent integration gain Gc in turn exceeds Gnc.2 Thus, given multiple 

                                                             
2 There are some cases with Swerling 2 and 4 targets where the noncoherent integration gain actually exceeds the 
coherent integration gain. However, even in these cases the SNR required to achieve a given detection 
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measurements of a nonfluctuating target in noise, and assuming the goal is to detect the target’s 

presence with the minimum required SNR, coherent integration should be performed first to the 

maximum extent possible. If coherent integration is not feasible or if it is limited to fewer than N 

samples at a time (perhaps due to radar-target motion-induced phase errors, transceiver phase 

instabilities, etc.), then there will still be N N  samples available to be combined. The results above 

show that these samples should be noncoherently integrated if possible. Finally, if noncoherent 

integration of the remaining samples is not feasible, binary integration can be applied with only a minor 

additional loss. 

It is worth noting that binary integration is often combined with multiple pulse repetition frequency 

(PRF) data acquisition to achieve more than just detection. In particular, collecting N coherent 

processing intervals (CPIs) of data in a pulse Doppler radar, each at a different PRF; applying appropriate 

threshold detection processing to each CPI; and then applying binary integration across the CPIs in each 

range-Doppler cell not only achieves an integration gain for detection but can also be used to reduce or 

avoid range-Doppler blind zones and resolve range and Doppler ambiguities.  See [1] for an introduction 

to this style of processing. 
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7 MATLAB® Code 

Versions of the following code were used to generate the figures in this memo. 

% 

% binary_int_gain_nonfluc 

% 

% Computes the integration gain from using binary integration. A 

% nonfluctuating target is assumed. Shnidman's equation is used to 

% estimate various SNRs needed, so the result is approximate but probably 

% pretty good. 

% 

% Reference: Section 6.4 of Richards, "Fundamentals of Radar Signal 

% Processing". 

% 

% Mark A. Richards, September 2016. 

  

clear all 

close all 

  

% Specify N for the N-of-N (binary integration) scheme. We compute 

                                                                                                                                                                                                    
performance is less with coherent integration than with noncoherent integration. A discussion of this phenomenon 
can be found in [2]. 

http://www.radarsp.com/
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% results for all choices of M from M=1 (1-of-N) to M=N (N-of-N). We'll 

% also loop over multiple values of N. 

NN = 3:8'; 

NNlen = length(NN); 

  

% Specify Pfa and Pd ranges 

PFA = 10.^(-[2:8]'); 

PFAlen = length(PFA); 

  

PD = [0.3:0.05:0.9,0.92,0.94,0.95]; 

% PD = [0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95]'; 

PDlen = length(PD); 

  

% Let's loop over PFA, then PD, then N, then M 

  

% matrix to hold the results 

gain_BI_dB = zeros(PFAlen,PDlen,NNlen,max(NN)); 

gain_noncoh_dB = zeros(PFAlen,PDlen,NNlen); 

gain_coh_dB = zeros(PFAlen,PDlen,NNlen); 

  

for PFAn = 1:PFAlen 

    Pfa = PFA(PFAn); 

     

    for PDn = 1:PDlen 

        Pd = PD(PDn); 

         

        % Compute the SNR required to achieve this Pd and Pfa with a single 

        % test, i.e. not using M-of-N processing. 

        SNR_1 = shnidman(1,Pd,Pfa,0); 

        SNR_1dB = 10*log10(SNR_1); 

         

        for Nn = 1:NNlen 

            N = NN(Nn); 

             

            % Compute the SNR for achieving this Pd and Pfa using N samples 

            % and noncoherent integration; use that to compute noncoherent 

            % integration gain for this case 

            SNR_N = shnidman(N,Pd,Pfa,0); 

            SNR_NdB = 10*log10(SNR_N); 

            gain_noncoh_dB(PFAn,PDn,Nn) = SNR_1dB - SNR_NdB; 

            gain_coh_dB(PFAn,PDn,Nn) = 10*log10(N); 

             

            for M = 1:N 

                M; 

                 

                % find required single-trial Pfa1 such that the cumulative 

                % false alarm probability is the desired value Pfa.  This 

                % requires a numerical search, but we can make an excellent 

                % initial guess. See reference. 

                k = factorial(N)/factorial(N-M)/factorial(M); 

                p0 = (Pfa/k)^(1/M); 

                fun = @(p) (MofN_probability(p,M,N) - Pfa); 

                Pfa1 = fzero(fun,p0); 

                 

                % Repeat for detection probability.  The initial guess is 

                % nowhere near as accurate in this case, but still seems to 

                % work OK. 

                fun = @(p) (MofN_probability(p,M,N) - Pd); 

                Pd1 = fzero(fun,[0 1]); 

                 

                % Now use Shnidman's equation to get the SNR required to 

                % achieve these single-trial probabilities. This is the SNR 

                % needed to meet the overall PD and PFA goal with the 
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                % M-of-N method. 

                SNR_MN = shnidman(1,Pd1,Pfa1,0); 

                SNR_MNdB = 10*log10(SNR_MN); 

                 

                % Compute the integration gain due to the M-of-N scheme 

                gain_BI_dB(PFAn,PDn,Nn,M) = SNR_1dB - SNR_MNdB; 

                 

                %                 if (M==3) & (N==8) & (Pd == 0.7) & (Pfa == 1e-6) 

                %                     M 

                %                     N 

                %                     Pd 

                %                     Pfa 

                %                     Pfa1 

                %                     Pd1 

                %                     SNR_MN 

                %                     SNR_MNdB 

                %                     SNR_1dB - SNR_MNdB 

                %                 end 

                 

            end % of loop over M 

             

        end % of loop over Nn 

         

    end % of loop over PDn 

     

end  % of loop over PFAn 

  

%  All of the results are in the gain(:,:,:,:) matrix.  Now some plots. 

  

% Gain vs. Pd for fixed Pfa and different M-N combinations 

  

% This parameter chooses which Pfa to use. PFAn = 1 for 1e-2, PFAn = 2 for 

% 1e-3, ,,, , PFAn = 7 for 1e-8 

  

% PFAn = 7;  % Pfa = 1e-8 

% PFAn = 6;  % Pfa = 1e-7 

PFAn = 5;  % Pfa = 1e-6 

% PFAn = 4;  % Pfa = 1e-5 

% PFAn = 3;  % Pfa = 1e-4 

% PFAn = 2;  % Pfa = 1e-3 

% PFAn = 1;  % Pfa = 1e-2 

  

% plot the M-of-3 cases 

gain_coh_dB(:,:,1) = 10*log10(3); 

figure 

x = PD; 

y = [gain_BI_dB(PFAn,:,1,1); % Pfa = 1e-6, all Pd values, N = 3, M = 1 

    gain_BI_dB(PFAn,:,1,2); % Pfa = 1e-6, all Pd values, N = 3, M = 2 

    gain_BI_dB(PFAn,:,1,3); % Pfa = 1e-6, all Pd values, N = 3, M = 3 

    gain_noncoh_dB(PFAn,:,1); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 3 

    gain_coh_dB(PFAn,:,1)]; % coherent gain, N = 3 

plot(x,y') 

xlim([0.3 1]); 

ylim([0,10]); 

grid 

xlabel('Pd') 

ylabel('Gain (dB)') 

title(['M-of-3, Pfa = ',num2str(PFA(PFAn))]) 

legend('1 of 3','2 of 3','3 of 3','Noncoherent','Coherent') 

  

% plot the M-of-4 cases 

gain_coh_dB(:,:,2) = 10*log10(4); 

figure 
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x = PD; 

y = [gain_BI_dB(PFAn,:,2,1); % Pfa = 1e-6, all Pd values, N = 4, M = 1 

    gain_BI_dB(PFAn,:,2,2); % Pfa = 1e-6, all Pd values, N = 4, M = 2 

    gain_BI_dB(PFAn,:,2,3); % Pfa = 1e-6, all Pd values, N = 4, M = 3 

    gain_BI_dB(PFAn,:,2,4); % Pfa = 1e-6, all Pd values, N = 4, M = 4 

    gain_noncoh_dB(PFAn,:,2); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 4 

    gain_coh_dB(PFAn,:,2)]; % coherent gain, N = 4 

plot(x,y') 

xlim([0.3 1]); 

ylim([0,10]); 

grid 

xlabel('Pd') 

ylabel('Gain (dB)') 

title(['M-of-4, Pfa = ',num2str(PFA(PFAn))]) 

legend('1 of 4','2 of 4','3 of 4','4 of 4','Noncoherent','Coherent') 

  

% plot the M-of-5 cases 

gain_coh_dB(:,:,3) = 10*log10(5); 

figure 

x = PD; 

y = [gain_BI_dB(PFAn,:,3,1); % Pfa = 1e-6, all Pd values, N = 5, M = 1 

    gain_BI_dB(PFAn,:,3,2); % Pfa = 1e-6, all Pd values, N = 5, M = 2 

    gain_BI_dB(PFAn,:,3,3); % Pfa = 1e-6, all Pd values, N = 5, M = 3 

    gain_BI_dB(PFAn,:,3,4); % Pfa = 1e-6, all Pd values, N = 5, M = 4 

    gain_BI_dB(PFAn,:,3,5); % Pfa = 1e-6, all Pd values, N = 5, M = 5 

    gain_noncoh_dB(PFAn,:,3); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 5 

    gain_coh_dB(PFAn,:,3)]; % coherent gain, N = 4 

plot(x,y') 

xlim([0.3 1]); 

ylim([0,10]); 

grid 

xlabel('Pd') 

ylabel('Gain (dB)') 

title(['M-of-5, Pfa = ',num2str(PFA(PFAn))]) 

legend('1 of 5','2 of 5','3 of 5','4 of 5','5 of 5','Noncoherent','Coherent') 

  

% plot the M-of-6 cases 

gain_coh_dB(:,:,4) = 10*log10(6); 

figure 

x = PD; 

y = [gain_BI_dB(PFAn,:,4,1); % Pfa = 1e-6, all Pd values, N = 6, M = 1 

    gain_BI_dB(PFAn,:,4,2); % Pfa = 1e-6, all Pd values, N = 6, M = 2 

    gain_BI_dB(PFAn,:,4,3); % Pfa = 1e-6, all Pd values, N = 6, M = 3 

    gain_BI_dB(PFAn,:,4,4); % Pfa = 1e-6, all Pd values, N = 6, M = 4 

    gain_BI_dB(PFAn,:,4,5); % Pfa = 1e-6, all Pd values, N = 6, M = 5 

    gain_BI_dB(PFAn,:,4,6); % Pfa = 1e-6, all Pd values, N = 6, M = 6 

    gain_noncoh_dB(PFAn,:,4); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 6 

    gain_coh_dB(PFAn,:,4)]; % coherent gain, N = 6 

plot(x,y') 

xlim([0.3 1]); 

ylim([0,10]); 

grid 

xlabel('Pd') 

ylabel('Gain (dB)') 

title(['M-of-6, Pfa = ',num2str(PFA(PFAn))]) 

legend('1 of 6','2 of 6','3 of 6','4 of 6','5 of 6','6 of 6', ... 

    'Noncoherent','Coherent') 

  

% plot the M-of-7 cases 

gain_coh_dB(:,:,5) = 10*log10(7); 

figure 

x = PD; 

y = [gain_BI_dB(PFAn,:,5,1); % Pfa = 1e-6, all Pd values, N = 7, M = 1 
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    gain_BI_dB(PFAn,:,5,2); % Pfa = 1e-6, all Pd values, N = 7, M = 2 

    gain_BI_dB(PFAn,:,5,3); % Pfa = 1e-6, all Pd values, N = 7, M = 3 

    gain_BI_dB(PFAn,:,5,4); % Pfa = 1e-6, all Pd values, N = 7, M = 4 

    gain_BI_dB(PFAn,:,5,5); % Pfa = 1e-6, all Pd values, N = 7, M = 5 

    gain_BI_dB(PFAn,:,5,6); % Pfa = 1e-6, all Pd values, N = 7, M = 6 

    gain_BI_dB(PFAn,:,5,7); % Pfa = 1e-6, all Pd values, N = 7, M = 7 

    gain_noncoh_dB(PFAn,:,5); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 7 

    gain_coh_dB(PFAn,:,5)]; % coherent gain, N = 7 

plot(x,y') 

xlim([0.3 1]); 

ylim([0,10]); 

grid 

xlabel('Pd') 

ylabel('Gain (dB)') 

title(['M-of-7, Pfa = ',num2str(PFA(PFAn))]) 

legend('1 of 7','2 of 7','3 of 7','4 of 7','5 of 7','6 of 7','7 of 7', ... 

    'Noncoherent','Coherent') 

  

% plot the M-of-8 cases 

gain_coh_dB(:,:,6) = 10*log10(8); 

figure 

x = PD; 

y = [gain_BI_dB(PFAn,:,6,1); % Pfa = 1e-6, all Pd values, N = 8, M = 1 

    gain_BI_dB(PFAn,:,6,2); % Pfa = 1e-6, all Pd values, N = 8, M = 2 

    gain_BI_dB(PFAn,:,6,3); % Pfa = 1e-6, all Pd values, N = 8, M = 3 

    gain_BI_dB(PFAn,:,6,4); % Pfa = 1e-6, all Pd values, N = 8, M = 4 

    gain_BI_dB(PFAn,:,6,5); % Pfa = 1e-6, all Pd values, N = 8, M = 5 

    gain_BI_dB(PFAn,:,6,6); % Pfa = 1e-6, all Pd values, N = 8, M = 6 

    gain_BI_dB(PFAn,:,6,7); % Pfa = 1e-6, all Pd values, N = 8, M = 7 

    gain_BI_dB(PFAn,:,6,8); % Pfa = 1e-6, all Pd values, N = 8, M = 8 

    gain_noncoh_dB(PFAn,:,6); % noncoherent gain, Pfa = 1e-6, all Pd values, N = 8 

    gain_coh_dB(PFAn,:,6)]; % coherent gain, N = 8 

plot(x,y') 

xlim([0.3 1]); 

ylim([0,10]); 

grid 

xlabel('Pd') 

ylabel('Gain (dB)') 

title(['M-of-8, Pfa = ',num2str(PFA(PFAn))]) 

legend('1 of 8','2 of 8','3 of 8','4 of 8','5 of 8','6 of 8','7 of 8', ... 

    '8 of 8','Noncoherent','Coherent') 

  

  

% Now let's use our data to see what the integratino loss is compared to 

% noncoherent. Generate a plot of the difference in integration gain 

% between the noncoherent case and the best binary case, as a function of 

% Pd, for a fixed Pfa. 

  

loss_NCmBI_dB = zeros(PDlen,NNlen); 

for Nn = 1:NNlen 

    Mopt = round((10^-0.02)*NN(Nn)^0.8) 

    for PDn = 1:PDlen 

        %         loss_NCmBI_dB(PDn,Nn) = gain_noncoh_dB(PFAn,PDn,Nn) - 

max(gain_BI_dB(PFAn,PDn,Nn,:)); 

        loss_NCmBI_dB(PDn,Nn) = gain_noncoh_dB(PFAn,PDn,Nn) - 

gain_BI_dB(PFAn,PDn,Nn,Mopt); 

    end 

end 

  

figure 

plot(PD,loss_NCmBI_dB) 

grid 

xlabel('Pd') 
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ylabel('Loss Relative to Noncoherent Integration (dB)') 

title(['Optimum M, Pfa = ',num2str(PFA(PFAn))]) 

legend('3=N','4','5','6','7','8','Location','Best') 

 


