Alternative Forms of Albersheim’s Equation

Mark A. Richards
June 2014

1 Albersheim’s Equation

In radar detection theory, the detection probability \(P_D \), false alarm probability \(P_{FA} \), number of samples \(N \) noncoherently integrated for a single detection test, and single-sample average signal-to-noise ratio (SNR) \(\chi \) are closely interrelated. A common problem is to find one of these quantities given the other three. This can be a difficult calculation. For example, in the nonfluctuating case with a linear detector, the target+noise probability density function (PDF) is Rician, a distribution which involves Bessel functions and for which the \(P_D \) calculation requires “Marcum’s Q function” [1]. While these equations can be solved using modern computational tools such as MATLAB®, an excellent empirical approximation requiring only a scientific calculator known as Albersheim’s equation is available for this case. Albersheim’s equation relates \(P_D \), \(P_{FA} \), \(N \), and the single-sample SNR in decibels \(\chi_{dB} \). As usually presented, Albersheim’s “equation” is the series of calculations [2],[3]

\[
A = \ln \left(\frac{0.62}{P_{FA}} \right) \quad B = \ln \left(\frac{P_D}{1 - P_D} \right)
\]

\[
\chi_{dB} = -5 \log_{10} N + 6.2 + 4.54 \log_{10} \left(A + 0.12AB + 1.7B \right)
\]

(1)

The error in the estimated value of \(\chi_{dB} \) required to obtain specified values of \(P_D \) and \(P_{FA} \) for a specified \(N \) is stated to be less than 0.2 dB for \(P_{FA} \) from \(10^{-3} \) to \(10^{-7} \), \(P_D \) from 0.1 to 0.9, and \(N \) from 1 to 8096. Albersheim’s equation is very useful not only for direct calculations of required SNR but also for such tasks as estimating noncoherent integration gain for the nonfluctuating case [4].

2 Solving Albersheim’s Equation for \(P_D \) or \(P_{FA} \)

As stated, Albersheim’s equation determines the average single-sample SNR corresponding to a specified \(P_D, P_{FA}, \) and \(N \). However, it can be rearranged to obtain a solution for \(P_D \) in terms of the other parameters using the following sequence of calculations:

1 “Shnidman’s equation” plays the same role for the Swerling target models as does Albersheim’s equation for the nonfluctuating case, but is somewhat more complicated; see [1].
M. A. Richards, “Alternative Forms of Albersheim’s Equation”

June 20, 2014

\[
A = \ln\left(\frac{0.62}{P_{FA}}\right), \quad Z = \frac{X_{dB} + 5 \log_{10} N}{6.2 + \frac{4.54}{\sqrt{N+0.44}}}, \quad B = \frac{10^Z - A}{1.7 + 0.12 A}
\]

(2)

\[
P_{D} = \frac{1}{1 + e^{-B}}
\]

A similar rearrangement gives \(P_{FA} \) in terms of the other parameters:

\[
B = \ln\left(\frac{P_{D}}{1 - P_{D}}\right), \quad Z = \frac{X_{dB} + 5 \log_{10} N}{6.2 + \frac{4.54}{\sqrt{N+0.44}}}, \quad A = \frac{10^Z - 1.7 B}{1 + 0.12 B}
\]

(3)

\[
P_{FA} = 0.62 e^{-A}
\]

Unfortunately, solving the standard form of Albersheim’s equation for \(N \) in terms of \(P_{D}, P_{FA} \) and \(X_{dB} \) does not appear to be possible because \(N \) appears in both logarithm and square root form.

3 Solving Albersheim’s Equation for \(N \)

A method for solving Albersheim’s equation for \(N \) can be developed by replacing the term \(6.2 + 4.54/\sqrt{N+0.44} \) with an approximation that uses \(\log_{10} N \), so that \(N \) appears in only one functional form and can be isolated. Define \(\alpha = \log_{10} N \). Then it can be seen that

\[
6.2 + \frac{4.54}{\sqrt{N+0.44}} \approx -\frac{0.4125}{\alpha^2} + \frac{2.4194}{\alpha} + 5.5606 \quad (2 \leq N \leq 100)
\]

(4)

This second-order least-squares approximation was found using the `polyfit` function in MATLAB®. Slightly different approximation coefficients result for different ranges of \(N \). For example, using the entire range \(2 \leq N \leq 8096 \) over which Albersheim’s equation is applied, the coefficients of \(\alpha \) are \((-0.2289, 1.8402, 5.7777)\). Here we concentrate on the range \(2 \leq N \leq 100 \), believing that is a range of more practical interest. Figure 1 illustrates the close fit of the approximation to the Albersheim equation term in Eq. (4).

Using Eq. (4) in Eq. (1) and defining \(Z = \log_{10} \left(A + 0.12 AB + 1.7 B \right) \) gives

\[
X_{dB} = -5\alpha + Z\left(-\frac{0.4125}{\alpha^2} + \frac{2.4194}{\alpha} + 5.5606 \right)
\]

(5)

This equation can be rearranged to give a cubic equation in \(\alpha \):

\[
5\alpha^3 + \left(X_{dB} - 5.5606 \cdot Z \right) \alpha^2 - 2.4194 \cdot Z \alpha + 0.4125 \cdot Z = 0
\]

(6)

2 Since the expansion is in terms of \(1/\log_{10} N \), the \(N = 1 \) term must be excluded from the least-squares fit.

3 This is the same \(Z \) as in Eq. (2) or (3).
Specifying the values of P_D, P_{FA}, and χ_{dB} fixes the value of Z. Equation (6) can then be solved for α. Since Eq. (6) is cubic, it is not trivially solvable with a calculator for the value of α and thus of \hat{N}. However, it can be solved numerically (for instance, using the roots function in MATLAB®). The largest real root is chosen as the desired value of α. This choice is entirely ad hoc but appears to produce good results. N must be a positive integer, therefore the final estimate is

$$\hat{N} = \text{round} \left(\max \left(10^\alpha, 1 \right) \right) \quad (7)$$

The estimate \hat{N} given in Eq. (7) can be tested by varying values of P_D, P_{FA}, and N over a wide range within the applicability of Albersheim’s equation. For each choice of these three parameters, χ_{dB} is computed using Albersheim’s equation. Using P_D, P_{FA}, and that computed value of χ_{dB}, Eqs. (6) and (7) are then used to compute \hat{N} and compare it to the true value of N for that case. Figure 2, for example, shows that when $P_D = 0.9$ and $P_{FA} = 10^{-3}$, the estimated value of N is correct for $3 \leq N \leq 84$. The error is -1 for $N = 2$ (i.e., $\hat{N} = 1$ in this case) and $+1$ for $85 \leq N \leq 100$. In fact, the magnitude of the error does not exceed 1 until $N > 560$. The maximum percentage error in \hat{N} for this case never exceeds 4.8% for N up to the limit of 8096, even though the approximation coefficients for only the range $2 \leq N \leq 100$ are used in this sample.
Figure 2. Error in estimate of N when $P_D = 0.9$ and $P_{FA} = 10^{-3}$.

For a more complete test, this procedure was carried out as the value of N was varied from 1 to 100; P_D was varied from 0.1 to 0.9 in steps of 0.01; and P_{FA} was varied from 10^{-7} to 10^{-3} in 100 logarithmically-spaced steps. Over this range, the absolute value of the error in \hat{N} never exceeds 1. For $N > 2$, the percentage error in \hat{N} never exceeds 1.266%, which occurs when $P_D = 0.88$, $P_{FA} = 10^{-7}$, and $N = 79$. (For $N = 2$ the estimated value is often $\hat{N} = 1$, giving a 50% error.) Figure 3 shows the variation of the absolute error in \hat{N} versus P_D and P_{FA} for $N = 2$ and $N = 90$. For all of the similar plots for $3 \leq N \leq 78$, the error is zero for the full range of P_D and P_{FA} tested.

Figure 3. Absolute value of error in estimate of N vs. P_D and P_{FA}: (a) $N = 2$, (b) $N = 90$. The error is zero for all values of P_D and P_{FA} considered and N between 3 and 78.
4 The Largest Root

Equation (6) has three roots, possibly leading to three different estimates \hat{N} in Eq. (7). Which should be used? In general, a cubic equation with real coefficients such as Eq. (6) has either three real roots, or one real root and a pair of complex conjugate roots. In the discussion so far, the largest real root has been used in Eq. (7) to compute the estimate \hat{N}. This choice was *ad hoc* but produces good results.

A numerical search across the same dense grid of P_D, P_{FA}, and N values used to obtain Fig. 3 showed that in practice, both cases occur: three real roots, and one real root plus two complex roots. For values of N of 3 or more, complex roots appear to occur only at the corner case of $P_D = 0.1$ and $P_{FA} = 10^{-3}$. For $N = 2$ the complex case occurs more frequently.

Explicit solutions for the roots of a cubic equation are given in [5]. These formulas could be used to compute the roots of Eq. (6) without the use of a numerical solver such as MATLAB®’s `roots`, and then the maximum real root used to compute \hat{N}. Such a solution could be implemented, if a bit tediously, on a programmable calculator. If it was possible to predict which of the three roots would be the largest, then the formula for that root would complete a straightforward, deterministic algorithm for estimating N. It is not, unfortunately, obvious how to identify *a priori* which of the three roots will be the largest positive root. This last step remains a topic for additional research. Lacking that result, either a root-finding algorithm such as `roots` or explicit calculation of all three roots using the closed-form equations in [5] must be used.

5 References