Errata for 3rd Printing Only

Fundamentals of Radar Signal Processing

Mark A. Richards

McGraw-Hill, New York, 2005

Note: The author wishes to thank the many students and readers who have helped to identify errata in the text. The responsibility for all errors, both those that have been found and those yet to be found, lies entirely with the author.

Page	Location on Page	Correction
xxiii	last line	Change " staggered set of PRFs" to " staggered PRFs"
11	Fig. 1.5	Labels on vertical axis should be $\pm D_y/2$, not $\pm D_y/\lambda$
11	2 nd line after Eq. 1.6	Change $\hat{E}(s) = E(\sin^{-1}\theta)$ to $\hat{E}(s) = E(\sin^{-1}(s))$.
11	Eq. 1.7	Sign of the exponential argument should be negative. The corrected equation is $A(\lambda\zeta) = \int_{-\infty}^{+\infty} \hat{E}(s)e^{-j2\pi\zeta s}ds$
11	2 nd line prior to Eq. 1.8	Change " $A(z) = A_0$." To " $A(y) = A_0$."
12	last line	Change " tapering of" to "tapering or"
14	1 st paragraph, last line	Change " $z \neq 0,$ " to " $x \neq 0,$ "
30	1 st line after Eq.1.41	Change " $F_s = 1/T$ " to " $F_s = 1/T_s$ ".
30	Eq. 1.42	Change $n \in [-\infty, \infty]$ to $n \in (-\infty, \infty)$
32	Footnote	The MATLAB non-conjugate transpose operator is incorrectly typeset. The last sentence of the footnote should read as follows: "The MATLAB [™] operator .' performs a non-conjugate transpose."
36	Eq. 1.66	$s_{xy}[k] = s_{yx}^* \left[-k\right]$, not $s_{xy}^* \left[-k\right]$
40	Fig. 1.24	Change caption from ", radar signal processing" to " radar signal processing is performed."
41	2 nd paragraph, 2 nd line	Change " is developed." To " are developed."

Page	Location on Page	Correction
53	1 st paragraph, 12 th line	Change " such as detecting aircraft" to " such as detecting when aircraft"
60	Eq. 2.24	$\sin\phi$ term missing from the differential in the integrand. The corrected equation is $\iint P^2(\theta,\phi)\sin\phi d\theta d\phi \cong \frac{\pi\theta_3\phi_3}{8\ln 2}G^2 = 0.57\theta_3\phi_3G^2$
63	Eq. 2.31	Delete $d\phi$ from the second and third forms. The corrected equation is $dA = R_0 d\theta \cdot \frac{\Delta R}{\cos \delta} = \frac{R_0 \Delta R}{\cos \delta} d\theta$
65	Eq. 2.37	Should be transmitted, not backscattered, E -field components on the right hand side of the second line. In addition, the individual components of the vector should not be boldface, since they are scalars. The corrected equation is $ \begin{bmatrix} E_{H}^{b} \\ E_{V}^{b} \end{bmatrix} = \begin{bmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{bmatrix} \begin{bmatrix} E_{H}^{t} \\ E_{V}^{t} \end{bmatrix} $ $ = \mathbf{S} \begin{bmatrix} E_{H}^{t} \\ E_{V}^{t} \end{bmatrix} $
66	Eq. 2.41	m^2+2 , not m^2+1 in the denominator. Corrected equation is $K = \frac{m^2 - 1}{m^2 + 2}$.
73	Table 2.3, entry for chi-square of degree 4 pdf	This is not an error, just a comment: Calling this a 4 th -degree chi-square pdf is somewhat non-standard terminology. A chi-square of degree <i>N</i> is usually considered to be a special case of the gamma pdf $\Gamma(\alpha,\beta)$ with $\alpha = N/2$ and $\beta = 2$. This pdf is $\Gamma(2,\overline{\sigma}/2)$, which is 4 th degree but does not have $\beta = 2$. This can also be considered a special case of the Erlang- <i>k</i> distribution, $E(k,\lambda)$ (which is itself a special case of the gamma) with $k = 2$ and $\lambda = 1/\overline{\sigma}$.
73	Table 2.3, entry for Rice pdf	First column: change "Rice or Rician, noncentral chi-square of degree 2" to just "Noncentral chi-square of degree 2".
76	Table 2.4, entry for Chi-square of degree 4	The expression for the mean of $\overline{\zeta}$ is incorrect; change it to $\overline{\zeta} = \frac{3}{4}\sqrt{\frac{\pi\overline{\sigma}}{2}}$.
76	Table 2.4, entry for Rice pdf	First column: change "Rice or Rician, noncentral chi-square of degree 2" to just "Rice or Rician".
78	Eq. (2.59)	Amplitude factors A and A [*] are not correctly included. The corrected equation is $s_{\overline{y}} (\Delta z) = \int_{-\pi/\alpha}^{\pi/\alpha} \overline{y}(t;z) \overline{y} * (t;z + \Delta z) dz$ $= \int_{-\pi/\alpha}^{\pi/\alpha} \left\{ Ae^{j\Omega(t-2R_0/c)} \sum_{n=-M}^{M} e^{-j\alpha zn} \right\} \cdot \left\{ A^* e^{-j\Omega(t-2R_0/c)} \sum_{l=-M}^{M} e^{+j\alpha(z+\Delta z)l} \right\} dz$
81	2 nd -to-last line	Change "(chi-square pdf," to "(4 th -degree chi-square pdf,"

Page	Location on Page	Correction
		SCR for the pulse-limited area clutter case falls of f as R , not R^3 . Thus the corrected
84	Eq. 2.66	equation for this case is $SCR = \frac{\sigma \cos \delta}{R\sigma^0 \Delta R\theta_3}$ (pulse-limited area clutter case). (The other
		two cases given are correct as is.)
87	3 occurrences on page	Replace ("Sangston, 1997)" with ("Sangston, 1994)".
89	Last paragraph	The 2 nd sentence of last paragraph should read " by the power transfer function $ H(F) ^2$ is used."
	Eq. 2.85 and	Change the sentence and equation to read as follows: "This is simply
93	the sentence preceding	$F_D \equiv F_r - F_t = +\frac{2\nu}{c}F_t = +\frac{2\nu}{\lambda_t}$
		Error in argument of $a(\cdot)$ in first line. The corrected equation (first line only) is
98	Eq. 2.102	$\overline{y}_m(t) = a\left(t - mT - \frac{2(R_0 - vmT)}{c + v}\right) \exp\left(j2\pi F_t\left(t - \frac{2(R_0 - vmT)}{c + v}\right)\right)$
98	Eq. 2.103	A constant phase term was omitted in going from the 2 nd to the last line of the equation. The corrected equation (last line only, but also including the correction to the argument of the envelope $a(\cdot)$ in the next correction), is $(2v) \qquad \begin{bmatrix} 2v \\ 2v \end{bmatrix} \qquad \begin{bmatrix} 2v \\ 2v \end{bmatrix} \qquad \begin{bmatrix} 4\pi v^2 mT \end{bmatrix} \qquad \begin{bmatrix} 4\pi vR_0 \end{bmatrix}$
		$= a \left(\frac{2v}{c}mT\right) \exp\left[j2\pi \left(\frac{2v}{\lambda_t}\right)mT\right] \exp\left[-j\frac{\pi v mT}{\lambda_t c}\right] \exp\left[j\frac{mT}{\lambda_t c}\right]$
98 – 99	Eq. 2.103, last line of p.98, and Eq. 2.105	Change $a\left(\frac{v}{c}mT\right)$ or $a\left(vmT/c\right)$ to $a\left(\frac{2v}{c}mT\right)$ or $a\left(2vmT/c\right)$ (5 total occurrences).
99	2 nd paragraph, 4 th line	Change " with a frequency of $-2v^2T/\lambda_t c$ hertz." To " corresponding to a frequency of $-2v^2/\lambda_t c$ hertz."
100	last line before Eq. 2.106	Remove the period at the end of this line.
101	Eqs. 2.108 and 2.109	Change the $\exp\left(j\frac{4\pi}{\lambda_t}R\right)$ to $\exp\left(-j\frac{4\pi}{\lambda_t}R\right)$ in both equations.
103	3 rd line	Change "Chap. 7" to "Chap. 8".
103	Eq. 2.115	$2^{nd} \text{ line of equation is repeated on first line as well. The corrected equation is}$ $\hat{\rho}(\theta,\phi;R_0) = \int_R x \left(\frac{2}{c}(R_0 - R)\right) \rho'(R,\theta,\phi) dR$ $= \left[\rho'(R,\theta,\phi) *_R x \left(\frac{2R}{c}\right)\right]_{R=R_0}$

Page	Location on Page	Correction
104	Eq. 2.117	Limits over ζ and ξ variables are reversed in the double integral. Corrected equation is $y(\theta, \phi; R_0) = A_r \int_{\xi=-\pi}^{\pi} \int_{\zeta=-\pi}^{\frac{\pi}{2}} P(\zeta - \theta, \xi - \phi) \hat{\rho}(\zeta, \xi; R_0) d\zeta d\xi$ $= \hat{\rho}(\theta, \phi; R_0) *_{\theta} *_{\phi} P(\theta, \phi)$
104	Last line before Eq. 2.118	Change " $X = R\xi$ " to " $X = R_0\xi$ " and change " $Y = R\zeta$ " to " $Y = R_0\zeta$ ".
107	Eq. 2.122	Change $x(t'-t)$ to $x(t-t')$ in the integrand.
107	2 nd line before Section 2.7.3	Change " scatterers Eq. (2.31) the voltage" to " scatterers (Eq. (2.31)) the voltage".
108	2 nd and 3 rd lines	Change "The angle-averaged reflectivity is reduced" to "The range-averaged reflectivity was reduced". Change "The range-averaged reflectivity is reduced" to "The angle-averaged reflectivity was reduced" (Note two changes in each phrase.)
110	Eq. 2.123	Change $x(t'-t)$ to $x(t-t')$ in the integrand.
113	Sangston reference	Incorrect reference. Replace with Sangston, K. J., and K. R. Gerlach, "Coherent Detection of Radar Targets in a Non-Gaussian Background", IEEE <i>Transactions on Aerospace and Electronic Systems</i> , vol. AES-30, no. 2, pp. 330-340, April 1994.
117	Fig. 3.3	Change the label "Range Sample/" to "Range Sample <i>l</i> " on the datacube in the upper right of the figure.
128	2 nd paragraph	Change "No. #5" to "number 5" in the 7 th and 8 th lines.
137	Eqs. 3.22 and 3.23	Change the units from cycle/m to cycles/m in both equations.
141	Fig. 3-20	The y-axis labels in all three parts should be $\tilde{y}[n]$, not $y[n]$. The corrected figure is: $\tilde{y}[n]$ $\tilde{y}[n]$ $\tilde{y}[n]$ y[n] y[n
156	3 rd line from bottom	Poor typography. Change $Y_1 * (\omega)$ to $Y_1^* (\omega)$. (The asterisk is indicating complex conjugate of Y_1).
164	Eq. 4.19	Multiple errors. Corrected equation is $y(t) = \begin{cases} \alpha (t - (T_M - \tau)), & T_M - \tau \le t \le T_M \\ \alpha ((T_M + \tau) - t), & T_M \le t \le T_M + \tau \\ 0, & \text{otherwise} \end{cases}$

Page	Location on Page	Correction
		Missing <i>j</i> in the exponential in the 3^{rd} line. Corrected equation is (3^{rd} line only shown)
168	Eq. 4.28	$=\frac{\alpha}{j(\Omega_D-\Omega_i)}\exp\left[j(\Omega_D-\Omega_i)s\right]_0^T$
169	6 th text line from bottom	Change "Sec. 4.6.2" to "Sec. 4.6.4".
		Missing the term $\exp(j2\pi F_D t)$ in the second line. The corrected equation is
		$\hat{A}(-t,-F_D) = \int_{-\infty}^{\infty} x(s'-t) \exp(-j2\pi F_D(s'-t)) x^*(s') ds'$
172	Eq. 4.47	$= \exp(j2\pi F_D t) \int_{-\infty}^{\infty} x(s'-t) \exp(-j2\pi F_D s') x^*(s') ds'$
		$=\exp(j2\pi F_D t)\hat{A}^*(t,F_D)$
176	3 rd line above Eq. 4.54	Change "As observed in Chap. 1, better frequency" to "Better frequency".
179	2 nd line after Eq. 4.61	Change " $y_0(0) = s_P(0)$." To " $y_0(t_l) = s_P(0)$.".
182	Eq. 4.70	Left-hand side is $Y[l, \omega; \omega_D)$, not $Y[l, \omega_D; \omega)$
184	Eq. 4.78	Change \hat{A}_p to A_p inside the summation.
185	Last line before Eq. 4.80	Change $\sin(\pi F_D \tau)/\pi F_D \tau$ to $ \sin(\pi F_D \tau)/\pi F_D \tau $.
188	2 nd line	Change " sample-to sample" to " sample-to-sample".
		Change $x(t_0)$ to $A(t_0)$. Also, poor typography of first exponential. Thus, change
192	Eq. 4.86	$X(\Omega) \approx \sqrt{\frac{-2\pi}{\phi''(t_0,\Omega)}} e^{-j\frac{\pi}{4}} x(t_0) e^{j\phi(t_0,\Omega)} \text{ to } X(\Omega) \approx \sqrt{\frac{-2\pi}{\phi''(t_0,\Omega)}} e^{-j\pi/4} A(t_0) e^{j\phi(t_0,\Omega)}$
193	Eq. 4.89	Change Ω to Ωt in first line. Corrected equation is $(1^{st} \text{ line only}) \phi(t, \Omega) = \alpha t^2 - \Omega t$.
193	Eq. 4.91	The typography errors (excessively small type, exponentials elevated too high) in Eq. 4.86 appear in 4.91 in multiple places. The corrected equation is: $X(\Omega) \approx \sqrt{\frac{-2\pi}{4}} e^{-j\frac{\pi}{4}} A(t_0) e^{j\phi(t_0,\Omega)}$
		$= \sqrt{\frac{-2\pi}{2\alpha}} e^{-j\frac{\pi}{4}} A\left(\frac{\Omega}{2\alpha}\right) e^{j\left[\alpha(\Omega/2\alpha)^2 - \Omega(\Omega/2\alpha)\right]}$ $= i \sqrt{\frac{\pi}{2\alpha}} e^{-j\frac{\pi}{4}} A\left(\frac{\Omega}{2\alpha}\right) e^{-j(\Omega^2/4\alpha)}$
		$-J\sqrt{\alpha}^{e} + A(\frac{1}{2\alpha})^{e}$

Page	Location on Page	Correction
100	F (02	The typography errors (excessively small type, exponentials elevated too high) in Eqs. 4.86 and 4.91 appear in 4.93 also. The corrected equation is:
193	Eq. 4.93	$X(\Omega) \approx j \sqrt{\frac{\pi}{\alpha}} e^{-j\frac{\pi}{4}} e^{-j(\Omega^2/4\alpha)}, -2\pi \left(\frac{\beta}{2}\right) \leq \Omega \leq +2\pi \left(\frac{\beta}{2}\right)$
201	Fa 4 112	The exponential in the last term should be $j\Omega(t-t_b)$ instead of $j\Omega t$. The corrected equation is
	Ĩ	$\overline{x}(t) = \zeta \exp\left(j\pi \frac{\beta}{\tau} (t-t_b)^2\right) \exp\left(j2\pi F_D t\right) \exp\left(j\Omega(t-t_b)\right), 0 \le t-t_b \le \tau$
		The change in Eq. 4.112 results in the following modification to 4.113::
201	Eq. 4.113	$y(t) = \varsigma \exp\left[-j\left(2\pi\left(\frac{\beta}{\tau}\Delta t_b - F_D\right)t - 2\pi\frac{\beta}{\tau}\Delta t_b t_0 + \Omega t_b\right)\right] \exp\left(j\pi\frac{\beta}{\tau}\left(\Delta t_b\right)^2\right)$
201	Eq. 4.114	Change units from "Hz" to "m".
204	1 st line after Eq. 4.117	Change "4 dB" to "5.6 dB".
205	Last line before Eq. 4.118	Change "(Prince, 1979)" to "(Price, 1979)".
210	2 nd line before Eq. 4.128	Change δt to Δt .
210	Eq. 4.129	Change ΔR on the left-hand side only to δR . The corrected equation is $\delta R = \frac{c}{2K\Delta F} = \frac{M}{K}\Delta R$
211	4 th line of text	Change " <i>K</i> high-resolution range bins ($c/2\beta$ meters)." to " <i>M</i> high-resolution range resolution cells ($c/2\beta$ meters) sampled at <i>K</i> points within the coarse range bin. If $K = M$ the range sample spacing equals the range resolution; if $K > M$ the range profile is oversampled compared to the resolution by the factor <i>K</i> / <i>M</i> ."
213	Fig. 4.40	Change F/τ on horizontal axis label to $F\tau$ on both parts of the figure.
214	Fig. 4.41	Change F/τ_c on horizontal axis label to $F\tau_c$.
226	End of 1 st paragraph	Change " Eaves and Reddy (1988)," to " Eaves and Reedy (1987)," (note two corrections).
		Missing the term $(-1)^m$ in the intermediate result. The corrected equation is
233	Eq. 5.4	$h_N[m] = (-1)^m \binom{N-1}{m} = (-1)^m \frac{(N-1)!}{m!(N-1-m)!}, m = 0, \dots, N-1$
242	Sentence preceding Eq. 5.38	Missing a " <i>j</i> " in the expression for $y(t)$. Change to "Consider the analog input $y(t) = A\exp[j(2\pi F_0 t + \phi_0)]$ for some"
242	Eq. 5.38	Change index from <i>n</i> to <i>m</i> . Not really an error, but more consistent with equations to follow. Corrected equation is $t_m = t_0 + \sum_{n=1}^{m-1} T_{(n-n)}$, $m = 0, \dots, \infty$
		$\prod_{p=0}^{m} (p)_p, p \in \mathbb{C}, \dots, p$

Page	Location on Page	Correction
243	Eq. 5.41	Change $ y[m] ^2$ to $ z[m] ^2$. Corrected equation is $ H_{2,P}(F_0) ^2 = \frac{\frac{1}{P} \sum_{m=0}^{P-1} z[m] ^2}{ x[m] ^2} = \frac{4A^2 \sum_{m=0}^{P-1} \sin^2(\pi F_0 T_m)}{PA^2}$
244	1 st paragraph, 5 th line from bottom	Change " reduced by a factor of 45/47, or 8 percent." to " reduced by a factor of 36/47, or about 23 percent."
247	3 rd line before Eq. 5.53	Change " $S_c(\omega) = k \exp\left(-\omega^2/\sigma_{\omega}^2\right)$ " to " $S_c(\omega) = A \exp\left(-\omega^2/\sigma_{\omega}^2\right)$ ". (<i>k</i> is used for the autocorrelation lag variable and should not also be used as an amplitude scale factor.)
252	Eq. 5.74	Change the limits on <i>m</i> in all three summations to 0 to <i>M</i> -1 instead of 1 to <i>M</i> . The corrected equation is $ Z ^2 = A ^2 \left(\sum_{m=0}^{M-1} a_m ^2 + e^{-\sigma_{\phi}^2} \sum_{\substack{m=0 \ m \neq k}}^{M-1} \sum_{k=0}^{M-1} a_m a_k^* \right).$
252	last line of 2 nd - to-last paragraph	Change " Skolnik (1998)," to "Skolnik (1990),".
257	4 th line after Eq. 5.80	Change "highest for small <i>M</i> " to "higher for small <i>M</i> ".
261	last line before Eq. (5.89)	Change " vector \mathbf{x} the output $\mathbf{h'x}$ of" to " vector \mathbf{y} the output $\mathbf{h'y}$ of"
261	Eq. (5.89)	Change the left-hand side from $\mathbf{h'x}$ to $\mathbf{h'y}$.
266	Eq. 5.104	This equation is identical to 5.102, rather than being the result of substituting 5.103 into 5.102. The result of doing that is not particularly simple, so I'll probably just delete 5.104 in a future edition.
269	6 th line	Change " estimation errors" to " estimation error".
270	Fig. 5.22	The graphs shown are not those described in the text. The correct figures are these:
270	1 st test line	Change "0.2 dB" to "0.17 dB".
271	Fig. 5.23 caption	Change " clutter suppression filter frequency response," to " clutter suppression filter,".

Page	Location on Page	Correction
		Missing equals sign between the two integrals. Corrected equation is
276	Eq. 5.120	$\hat{P}_{y} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} S_{y}(\omega) d\omega = \frac{1}{2\pi} \int_{-\pi}^{+\pi} Y(\omega) ^{2} d\omega$
289	Eq. 5.138	Change the equation to $M_s = \frac{d_{pc}}{vT}$.
293	Eaves & Reedy reference	Change date from 1988 to 1987.
299	Last paragraph, 1 st line	Change "The LRT test is" to "The LRT is".
301	Eq. 6.13	Change lower limit on summation from $n - 0$ to $n = 0$.
309	Last paragraph, 1 st line	Change "The LRT test is" to "The LRT is".
309	2 nd line prior to Eq. 6.30	Font error. Change " with $\mathbf{m} = 0_N$ under hypothesis H_0 and $\mathbf{m} \neq 0_N$ under hypothesis H_1 ." To " with $\mathbf{m} = 0_N$ under hypothesis H_0 and $\mathbf{m} \neq 0_N$ under hypothesis H_1 ."
310	Paragraph before Eq. 6.31 , 6^{th} line	Change " complex number of the form $m_n e^{j\theta_n}$." To " complex number m_n ."
310	2 nd -to-last line	Delete the entire sentence "Note that if $\mathbf{m} = m1_N$, to Eq. (6.13) again."
311	2 nd line after Eq. 6.33	Change " H_1 y = m + w and" to " H_1 , y = m + w and"
314	Eq. 6.39	There is a sign error on the phase angle θ in the first line of the equation. The corrected equation is $p_{\mathbf{y}}\left(\mathbf{y} H_{1},\theta\right) = \frac{1}{\pi^{N}\beta^{2N}} \exp\left[-\frac{1}{\beta^{2}}\left(\mathbf{y}^{H}\mathbf{y} - 2\operatorname{Re}\left\{\tilde{\mathbf{m}}^{H}\mathbf{y}e^{-j\theta}\right\} + E\right)\right]$ $= \frac{1}{\pi^{N}\beta^{2N}} \exp\left[-\frac{1}{\beta^{2}}\left(\mathbf{y}^{H}\mathbf{y} - 2\left \tilde{\mathbf{m}}^{H}\mathbf{y}\right \cos(\phi - \theta) + E\right)\right]$
314	Eq. 6.40	The typesize on the $1/\beta^2$ term in the exponential is poor. The boldface E in the same exponent should be non-bold italic <i>E</i> instead, and θ should be θ' in them cosine and the differential. The corrected equation is $p_{\mathbf{y}}(\mathbf{y} H_1) = \frac{1}{\pi^N \beta^{2N}} e^{-\frac{1}{\beta^2} (\mathbf{y}^H \mathbf{y} + E)} \frac{1}{2\pi} \int_{0}^{2\pi} \exp\left[\frac{2}{\beta^2} \left \tilde{\mathbf{m}}^H \mathbf{y} \right \cos \theta' \right] d\theta'$

Page	Location on Page	Correction
225	Eqs. 6.66 – 6.68	The term $\exp(-\tilde{m}^2/\beta^2)$ becomes $\exp(-N\tilde{m}^2/\beta^2)$ when it is pulled out of the product
		in Eq. (6.66); this correction propagates to Eqs. (6.67) and (6.68). The corrected equations are
		$(6.66): \Lambda = \prod_{n=0}^{N-1} e^{-\tilde{m}^2/\beta^2} I_0\left(\frac{2\tilde{m}z_n}{\beta^2}\right) = e^{-N\tilde{m}^2/\beta^2} \prod_{n=0}^{N-1} I_0\left(\frac{2\tilde{m}z_n}{\beta^2}\right) \stackrel{H_1}{\underset{N=0}{>}} -\lambda$
323		$(6.67): \ln \Lambda = -\frac{N\tilde{m}^2}{\beta^2} + \sum_{n=0}^{N-1} \ln \left[I_0 \left(\frac{2\tilde{m}z_n}{\beta^2} \right) \right] \stackrel{H_1}{\underset{H_0}{>}} \ln \left(-\lambda \right)$
		$(6.68): \sum_{n=0}^{N-1} \ln \left[I_0 \left(\frac{2\tilde{m}z_n}{\beta^2} \right) \right] \stackrel{H_1}{\underset{H_0}{>}} \ln \left(-\lambda \right) + \frac{N\tilde{m}^2}{\beta^2} \equiv T$
326	2 nd paragraph, 3 rd line	Change $z' = \sum (z'_n)^2 = z^2 / \beta^2$ to $z' = \sum (z'_n)^2 = z / \beta^2$.
		P_D and P_{FA} parameters need to be specified in this figure. Replace with this version:
332	Fig. 6.11	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 16 \\ 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 16 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $
335	Last sentence prior to Table 6.1	Change " requires $\chi \approx 6$ dB for the nonfluctuating case, but $\chi \approx 17$ dB for the Swerling 5 case," to " requires $\chi \approx 6.5$ dB for the nonfluctuating case, but $\chi \approx 17.5$ dB for the Swerling 1 case,"
389, 397, 400	See adjacent block	Change "SAR radar" to "SAR" or "SAR radars" to "SARs" in the following places: p. 389, 2 nd paragraph, 7 th line; p. 397, 2 nd paragraph, 3 rd line; and p. 400, ;last paragraph, 3 rd line.
389	Last paragraph, 5 th line	Change :Soumkeh" to "Soumekh".
396	2 nd paragraph	4 th line: change "right" to "left"; 6 th line, change "left" to "right".
		This section needs to be made a little more precise. Eq. 8.13 is an approximation (albeit
399 – 401	Section 8.1.3	a good one); the corrected equation is $\Delta \theta \approx \frac{\Delta CR}{R}$. In Fig. 8.13 and surrounding text, R_P
		= <i>K</i> , so there is no reason to distinguish them. Then $x_P = R\sin\theta_P$, and $F_{DP} = (2\nu/\lambda)\sin\theta_P$. Thus, Eq. 8.16 becomes $x_P = R\sin\theta_P = \frac{\lambda RF_{DP}}{2\nu}$.

Page	Location on Page	Correction
403	2 nd line after Eq. 8.23	Change " the stripmap "SAR <i>swath constraint</i> " to " the stripmap SAR <i>swath constraint</i> " (<i>i.e.</i> , remove extraneous quotation mark).
413	Fig. 8.19	Change <i>F</i> to <i>F</i> _D in the transformations under the last block in the diagram. The corrected figure is as follows: fast/slow-time data matrix $y[l,m]$ Fast-Time view fast/slow time data matrix $y[l,m]$ Fast-Time view fast/slow-time data matrix $y[l,m]$ Slow-Time view fast/slow-time fFT $I \rightarrow R = R_0 + cT_s l/2$ $I \rightarrow R = R_0 + cT_s l/2$ $F_D \rightarrow x = -\lambda RF_D/2v$
415	Fig. 8.21 caption	Change "(<i>a</i>) Rescaling of cross-range for range variation. (<i>b</i>) Shifting of range for cross-range displacement." to "(<i>a</i>) Rescaling of cross-range for cross-range displacement. (<i>b</i>) Shifting of range for range variation."
422	Eq. 8.44	Change the "=" sign in the last line only to approximately equal sign " \approx ".
423	Eq. 8.49	Sign error in the exponential. Also, don't change Ω to $4\pi/\lambda$ in the exponential; this obscures the dependence on Ω . Finally, change argument <i>t</i> on left-hand side to Ω . The corrected equation is $\mathscr{H}(K_u, \Omega; R_0) = \int_{-\infty}^{+\infty} \exp\left\{-j\left[K_u u + \Omega\left(\delta R + \sqrt{(u-x)^2 + R_0^2}\right)\right]\right\} du$
428	Eq. 8.56	Make it clear that the two lines on the right-hand side are all part of the same integral. The corrected equation is $y(t) = w(t) \int_{-\infty}^{+\infty} \tilde{\rho}(\delta t) \exp\left[-j\left(\Omega_0 + 2\pi \frac{\beta}{\tau}(t-t_0)\right) \delta t\right] \cdot \dots$ $\dots \cdot \exp\left(j\pi \frac{\beta}{\tau}(\delta t)^2\right) d(\delta t)$
429	Eq. 8.59 and 8.60	This is just poorly expressed by the author. The first line of Eq. 8.59 is correct. The 2^{nd} and 3^{rd} lines, however, are expressing the range of Ω or <i>F</i> over which the argument of \tilde{P} varies as <i>t</i> varies over the region of support of $w(t)$. This same problem exists in Eq. 8.60. This will have to be expressed more carefully in a future edition.
447	Table 8.2	A source credit should be added at the bottom of the table. It should read: Source: Kennedy, 1988 <i>b</i>
448	Eq. 8.88	The term $\left(1 + \frac{1}{(M-1)^2}\right)$ should be changed to $\left(1 - \frac{1}{(M-1)^2}\right)$
449	Eq. 8.89	The term $\left(1 + \frac{1}{(M-1)^2}\right)^{-1}$ should be changed to $\left(1 - \frac{1}{(M-1)^2}\right)^{-1}$

Page	Location on Page	Correction
461	Ch. 9	Notational problem: K_{θ} , first defined at top of p. 463, should be changed to k_{θ} throughout this chapter because it is a normalized spatial frequency. Specifically, define $k_{\theta} = K_{\theta} d$, with $K_{\theta} \equiv 2\pi \sin \theta / \lambda$. The units of k_{θ} are radians (or radians per element, or radians per phase center). Thus also replace F_{θ} with f_{θ} in cycles (per element or per phase center).
463	1 st line	Change " in radians" to " in radians as projected into the plane of the array face"
463	4 th line	Change " range of K_{θ} is $\pm \pi d/\lambda$;" to " range of K_{θ} is $\pm 2\pi d/\lambda$;".
463	Ea 95	Need to conjugate and transpose the steering vector in the second and third lines of the equation. The corrected equation is $\mathbf{h} = \begin{bmatrix} w_0 & w_1 e^{+jK_{\theta}} & \cdots & w_{N-1} e^{+j(N-1)K_{\theta}} \end{bmatrix}'$
	Lq. 7.5	$= \begin{bmatrix} w_0 & w_1 & \cdots & w_{N-1} \end{bmatrix}' \odot \mathbf{a}_s^H(\theta)$ $= \mathbf{w}' \odot \mathbf{a}_s^H(\theta)$
464	Sentence prior to Eq. 9.10	Change " $\kappa = 1/\sigma^2$ " to " $\kappa = \sigma^2$ ".
475	Eq. 9.27	The middle index of the middle entry in the vector should be "1" instead of "0". The $ \begin{bmatrix} y[l_0,0,0] \\ y[l_0,0,1] \\ \vdots \\ y[l_0,0,N-1] \\ y[l_0,1,0] \\ y[l_0,1,1] \\ \vdots \\ y[l_0,1,N-1] \\ \vdots \\ y[l_0,M-1,0] \\ y[l_0,M-1,1] \\ \vdots \\ y[l_0,M-1,N-1] \end{bmatrix} $
481	Eq. (9.46)	Change χ_c to χ_t . The corrected equation is $\chi_0 = MN \chi_t$.
484	Eq. 9.53	Because of the earlier change to Eq. 5.138, change this equation to $M_s = \frac{d_{pc}}{vT} \implies \beta = \frac{vT}{d_{pc}} = \frac{1}{M_s}.$
486	Eq. 9.54	Sign error in the time slip. Change the equation to $z[m] = y_f[m] - y_a[m + M_s]$
486	Eq. 9.55	Change the equation to $\mathbf{h}_1 \Rightarrow h_1[m,n] = \delta[m,n] - \delta[m+M_s,n+1]$

Page	Location on Page	Correction
486	Eq. 9.56	The argument of the exponential in the summation is incorrect, and the two preceding errata also affect this equation. The corrected equation is $H_1(\omega_D, \tilde{K}_\theta) = \sum_{m=0}^{M_s - 1} \sum_{n=0}^{1} h_1[m, n] e^{-j(m\omega_D + n\tilde{K}_\theta)}$ $= 1 - \exp\left[-j\left(-M_s\omega_D - \tilde{K}_\theta\right)\right]$ $= 1 - \exp\left[j\left(M_s\omega_D + \tilde{K}_\theta\right)\right]$ $= 1 - \exp\left[j\left(M_s\omega_D - K_\theta\right)\right]$ (Note: if notational suggestion for Ch. 9 (see entry above for p. 461) is adopted, then K_θ and \tilde{K}_θ in this equation would become k_θ and \tilde{k}_θ .)
492 – 494	Eq. 9.68 and subsequent	The last line of Eq. (9.68) should read $z = \mathbf{h'y}$ instead of $z = \mathbf{h't}$. This same correction is needed in step 6 at the top of p. 493, and in step 6 at the bottom of p. 494.
503	Robey reference	The paper referenced as "Robey et al., 1992" on p. 490 is missing from the references. The reference is as follows: Robey, F. C., et al., "A CFAR Adaptive matched Filter Detector", <i>IEEE Transactions</i> <i>on Aerospace & electronic systems</i> , vol. AES-28(1), pp. 208-216, Jan. 1992.

Errata for 3rd Printing Only

Fundamentals of Radar Signal Processing

Mark A. Richards

McGraw-Hill, New York 2005 ISBN 0-07-144474-2

